• Title/Summary/Keyword: On-Chip Memory

Search Result 296, Processing Time 0.024 seconds

Low-Power IoT Microcontroller Code Memory Interface using Binary Code Inversion Technique Based on Hot-Spot Access Region Detection (핫스팟 접근영역 인식에 기반한 바이너리 코드 역전 기법을 사용한 저전력 IoT MCU 코드 메모리 인터페이스 구조 연구)

  • Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Microcontrollers (MCUs) for endpoint smart sensor devices of internet-of-thing (IoT) are being implemented as system-on-chip (SoC) with on-chip instruction flash memory, in which user firmware is embedded. MCUs directly fetch binary code-based instructions through bit-line sense amplifier (S/A) integrated with on-chip flash memory. The S/A compares bit cell current with reference current to identify which data are programmed. The S/A in reading '0' (erased) cell data consumes a large sink current, which is greater than off-current for '1' (programmed) cell data. The main motivation of our approach is to reduce the number of accesses of erased cells by binary code level transformation. This paper proposes a built-in write/read path architecture using binary code inversion method based on hot-spot region detection of instruction code access to reduce sensing current in S/A. From the profiling result of instruction access patterns, hot-spot region of an original compiled binary code is conditionally inverted with the proposed bit-inversion techniques. The de-inversion hardware only consumes small logic current instead of analog sink current in S/A and it is integrated with the conventional S/A to restore original binary instructions. The proposed techniques are applied to the fully-custom designed MCU with ARM Cortex-M0$^{TM}$ using 0.18um Magnachip Flash-embedded CMOS process and the benefits in terms of power consumption reduction are evaluated for Dhrystone$^{TM}$ benchmark. The profiling environment of instruction code executions is implemented by extending commercial ARM KEIL$^{TM}$ MDK (MCU Development Kit) with our custom-designed access analyzer.

A Fabrication of 128K$\times$8bit SRAM Multichip Package (128K$\times$8bit SRAM 메모리 다중칩 패키지 제작)

  • Kim, Chang-Yeon;Jee, Yong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.3
    • /
    • pp.28-39
    • /
    • 1994
  • We experimented on memory multichip modules to increase the packing density of memory devices and to improve their electrical characteristics. A 128K$\times$8bit SRAM module was made of four 32K$\times$8bit SRAM memory chips. The memory multichip module was constructed on a low-cost double sided PCB(printed circuit boared) substrate. In the process of fabricating a multichip module. we focused on the improvement of its electrical characteristics. volume, and weight by employing bare memory chips. The characteristics of the bare chip module was compared with that of the module with four packaged chips. We conducted circuit routing with a PCAD program, and found the followings: the routed area for the module with bare memory chips reduced to a quarter of that area for module with packaged memory chips. 1/8 in volume, 1/5 in weight. Signal transmission delay times calculated by using transmission line model was reduced from 0.8 nsec to 0.4 nsec only on the module board, but the coupling coefficinet was not changed. Thus, we realized that the electrical characteristics of multichip packages on PCB board be improved greatly when using bare memory chips.

  • PDF

2-Dimensional Bitmap Tries for Fast Packet Classification (고속 패킷 분류를 위한 2차원 비트맵 트라이)

  • Seo, Ji-hee;Lim, Hye-sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1754-1766
    • /
    • 2015
  • Packet classification carried out in Internet routers is one of the challenging tasks, because it has to be performed at wire-speed using five header fields at the same time. In this paper, we propose a leaf-pushed AQT bitmap trie. The proposed architecture applies the leaf-pushing to an area-based quad-trie (AQT) to reduce unnecessary off-chip memory accesses. The proposed architecture also applies a bitmap trie, which is a kind of multi-bit tries, to improve search performance and scalability. For performance evaluation, simulations are conducted by using rule sets ACL, FW, and IPC, with the sizes of 1k, 5k, and 10k. Simulation results show that the number of off-chip memory accesses is less than one regardless of set types or set sizes. Additionally, since the proposed architecture applies a bitmap trie, the required number of on-chip memory accesses is the 50% of the leaf-pushed AQT trie. In addition, our proposed architecture shows good scalability in the required on-chip memory size, where the scalability is identified by the stable change in the required memory sizes, as the size of rule sets increases.

Design of a shared buffer memory switch with a linked-list architecture for ATM applications (Linked-list 구조를 갖는 ATM용 공통 버퍼형 메모리 스위치 설계)

  • 이명희;조경록
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2850-2861
    • /
    • 1996
  • This paper describes the design of AATM switch LIS of shared buffer type with linked-list architecture to control memory access. The proposed switch LSI consists of the buffer memory, controller and FIFO memory blocks and two special circuits to avoid the cell blocking. One of the special circuit is a new address control scheme with linked-list architecture which maintains the address of buffer memory serially ordered from write address to read address. All of the address is linked as chain is operated like a FIFO. The other is slip-flag register it will be hold the address chain when readaddress missed the reading of data. The circuits control the buffer memory efficiently and reduce the cell loss rate. As a result the designed chip operates at 33ns and occupied on 2.7*2.8mm$^{2}$ using 0.8.mu.m CMOS technology.

  • PDF

YU-RISC on-chip memory의 설계

  • 고동범;최병윤;이광엽;김의규;최상훈;손승일;이문기
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1990.06a
    • /
    • pp.539-542
    • /
    • 1990

Design and Evaluation of Transaction Processing System based on Main Memory Database (주기억장치 데이터베이스 기반 트랜잭션 처리 시스템의 설계 및 평가)

  • 심종익
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.4
    • /
    • pp.367-377
    • /
    • 1999
  • Nowadays, the number of database applications which need fast transaction processing are increasing. One way to improve the performance of transaction processing is to reside the whole database in main memory As semiconductor memory becomes cheaper and chip densities increase, the research to improve transaction throughput rates of transaction processing system, using main memory databases, has begun In this thesis, how to implement a high performance transaction processing system based on main memory databases, new concurrency control scheme, recovery scheme and storage structure is presented. The objective of the proposed schemes is to improve the transaction processing system performance measured by transaction throughput and response times.

  • PDF

A design of BIST circuit and BICS for efficient ULSI memory testing (초 고집적 메모리의 효율적인 테스트를 위한 BIST 회로와 BICS의 설계)

  • 김대익;전병실
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.8
    • /
    • pp.8-21
    • /
    • 1997
  • In this paper, we consider resistive shorts on gate-source, gate-drain, and drain-source as well as opens in MOS FETs included in typical memory cell of VLSI SRAM and analyze behavior of memory by using PSPICE simulation. Using conventional fault models and this behavioral analysis, we propose linear testing algorithm of complexity O(N) which can be applied to both functional testing and IDDQ (quiescent power supply current) testing simultaneously to improve functionality and reliability of memory. Finally, we implement BIST (built-in self tsst) circuit and BICS(built-in current sensor), which are embedded on memory chip, to carry out functional testing efficiently and to detect various defects at high-speed respectively.

  • PDF

Implementation of a Single-chip Speech Recognizer Using the TMS320C2000 DSPs (TMS320C2000계열 DSP를 이용한 단일칩 음성인식기 구현)

  • Chung, Ik-Joo
    • Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.157-167
    • /
    • 2007
  • In this paper, we implemented a single-chip speech recognizer using the TMS320C2000 DSPs. For this implementation, we had developed very small-sized speaker-dependent recognition engine based on dynamic time warping, which is especially suited for embedded systems where the system resources are severely limited. We carried out some optimizations including speed optimization by programming time-critical functions in assembly language, and code size optimization and effective memory allocation. For the TMS320F2801 DSP which has 12Kbyte SRAM and 32Kbyte flash ROM, the recognizer developed can recognize 10 commands. For the TMS320F2808 DSP which has 36Kbyte SRAM and 128Kbyte flash ROM, it has additional capability of outputting the speech sound corresponding to the recognition result. The speech sounds for response, which are captured when the user trains commands, are encoded using ADPCM and saved on flash ROM. The single-chip recognizer needs few parts except for a DSP itself and an OP amp for amplifying microphone output and anti-aliasing. Therefore, this recognizer may play a similar role to dedicated speech recognition chips.

  • PDF

A 512 Bit Mask Programmable ROM using PMOS Technology (PMOS 기술을 이용한 512 Bit Mask Programmable ROM의 설계 및 제작)

  • 신현종;김충기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.4
    • /
    • pp.34-42
    • /
    • 1981
  • A 512-bit Task Programmable ROM has been designed and fabricated using PMOS technology. The content of the memory was written through the gate pattern during the fabrication process, and was checked by displaying the output of the chip on an oscilloscope with 512(32$\times$16) matrix points. The operation of the chip was surcessful with operating voltage from -6V to -l2V, The power consumption and propagation delay time have been measured to be 3mW and 13 $\mu$sec, respectively at -6 Volt. The power consunption increased to 27mW and propagation delay time decreased to 3$\mu$sec at -12V. The output of the chip was capable of driving the input of a TTL gate directly and retained a high impedence state when the chip solect function disabled the output.

  • PDF