• Title/Summary/Keyword: Omega phase

Search Result 395, Processing Time 0.029 seconds

Crystal Structure and Electrochemical Properties of LiMn2-yMyO4 Cathode Material by Complex Substitution of Mg and Zn (Mg와 Zn의 복합치환에 따른 LiMn2-yMyO4 정극 활물질의 결정 구조 및 전기화학적 특성)

  • 정인성;정해덕;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.361-366
    • /
    • 2002
  • Spinel $LiMn_{2-y}M_yO_4$ and $LiMn_{2-y}M_yO_4$ (M=Mg, Zn) powders were synthesized by solid-state method at $800^{\circ}C$ for 37h. Crystal structure and electrochemical properties were analyzed by X-ray diffraction, charge-discharge test, cyclic voltammetry and ac impedance to $LiMn_{2-y}M_yO_4$. All cathode material showed spinel structure in X-ray diffraction. Ununiform distortion which calculated by (111) face and (222) face was almost constant in spite of the change of the kind and the substituting ratio of the metal cation in $LiMn_{2-y}M_yO_4$ (M=Mg, Zn). $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cell substituted $Mg^{+2}$ and $Zn^{+2}$ showed excellent discharge capacities than other cells, which it presented about 120mAh/g at the 1st cycle and about 73mAh/g at the 250th cycle, respectively. AC impedance of $LiMn_{2-y}M_yO_4/Li$ cells showed the similar resistance of about 65~110$\Omega$ before cycling.

Evaluation of the fabrications and properties of ultra-thin film for memory device application (메모리소자 응용을 위한 초박막의 제작 및 특성 평가)

  • Jeong, Sang-Hyun;Choi, Haeng-Chul;Kim, Jae-Hyun;Park, Sang-Jin;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.169-170
    • /
    • 2006
  • In this study, ultra thin films of ferroelectric vinylidene fluoride-trifluoroethylene (VF2-TrFE) copolymer were fabricated on degenerated Si (n+, $0.002\;{\Omega}{\cdot}cm$) using by spin coating method. A 1~5 wt% diluted solution of purified vinylidene fluoride-trifluoroethylene (VF2:TrFE=70:30) in a dimethylformamide (DMF) solvent were prepared and deposited on silicon wafers at a spin rate of 2000~5000rpm for 30 seconds. After annealing in a vacuum ambient at $200^{\circ}C$ for 60 min, upper gold electrodes were deposited by vacuum evaporation for electrical measurement. X-ray diffraction results showed that the VF2-TrFE films on Si substrates had $\beta$-phase of copolymer structures. The capacitance on $n^+$-Si(100) wafer showed hysteresis behavior like a butterfly shape and this result indicates clearly that the dielectric films have ferroelectric properties. The typical measured remnant polarization (2Pr) and coercive filed (EC) values measured using a computer controlled a RT-66A standardized ferroelectric test system (Radiant Technologies) were about $0.54\;C/cm^2$ and 172 kV/cm, respectively, in an applied electric field of ${\pm}0.75\;MV/cm$.

  • PDF

Effect of Annealing Temperature after Deposition on the Structural, Electrical and Optical Properties of In2O3 Films (증착 후 열처리 온도에 따른 In2O3 박막의 구조적, 전기적, 광학적 특성 변화)

  • Lee, Y.J.;Lee, H.M.;Heo, S.B.;Kim, Y.S.;Chae, J.H.;Kong, Y.M.;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.307-310
    • /
    • 2011
  • We have investigated the structural, electrical and optical properties of $In_2O_3$ thin films deposited by RF magnetron sputtering and then annealed at $150^{\circ}C$ and $300^{\circ}C$ in vacuum. The structural and electrical properties are strongly related to annealing temperature. All the annealed $In_2O_3$ films are grown as a hexagonal wurtzite phase and the largest grain size is observed in the films annealed at $300^{\circ}C$. The sheet resistance decreases with a increase in annealing temperature and $In_2O_3$ film annealed at $300^{\circ}C$ shows the lowest sheet resistance of $174{\Omega}/{\Box}$. The optical transmittance of $In_2O_3$ films in a visible wavelength region also depends on the annealing temperature. The films annealed at $300^{\circ}C$ show higher transmittance of 76% than those of the films prepared in this study.

Fabrication and Evaluation Properties of Titanium Sintered-body for a Sputtering Target by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 스퍼터링 타겟용 타이타늄 소결체 제조 및 특성 평가)

  • Lee, Seung-Min;Park, Hyun-Kuk;Youn, Hee-Jun;Yang, Jun-Mo;Woo, Kee-Do;Oh, Ik-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.845-852
    • /
    • 2011
  • The Spark Plasma Sintering(SPS) method offers a means of fabricating a sintered-body having high density without grain growth through short sintering time and a one-step process. A titanium compact having high density and purity was fabricated by the SPS process. It can be used to fabricate a Ti sputtering target with controlled parameters such as sintering temperature, heating rate, and pressure to establish the optimized processing conditions. The compact/target(?) has a diameter of ${\Phi}150{\times}6.35mm$. The density, purity, phase transformation, and microstructure of the Ti compact were analyzed by Archimedes, ICP, XRD and FE-SEM. A Ti thin-film fabricated on a $Si/SiO_2$ substrate by a sputtering device (SRN-100) was analyzed by XRD, TEM, and SIMS. Density and grain size were up to 99% and below $40{\mu}m$, respectively. The specific resistivity of the optimized Ti target was $8.63{\times}10^{-6}{\Omega}{\cdot}cm$.

The Investigation of Ni Thin Film by Atomic Layer Deposition

  • Do K. W.;Yang C. M.;Kang I. S.;Kim K. M.;Back K. H.;Cho H. I.;Lee H. B.;Kong S. H.;Hahm S. H.;Kwon D. H.;Lee J. H.;Lee J. H.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.193-196
    • /
    • 2005
  • Low resistance Ni thin films for using NiSi formation and metallization by atomic layer deposition (ALD) method have been studied. ALD temperature window is formed between $200^{\circ}C\;and\;250^{\circ}C$ with deposition rate of $1.25{\AA}$/cycle. The minimum resistance of deposited Ni films shows $4.333\;{\Omega}/\square$ on the $SiO_2/Si$ substrate by $H_2$ direct purging process. The reason of showing the low resistance is believed to be due to format ion of the $Ni_3C$ phase by residual carbon in Bis-Ni The deposited film exhibits excellent step coverage in the trench having 1(100 nm) : 16 (1.6 um) aspect ratio.

  • PDF

Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD (Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성)

  • Choi, Yongyoon;Kim, Kunil;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

Nano-thick Nickel Silicide and Polycrystalline Silicon on Polyimide Substrate with Extremely Low Temperature Catalytic CVD (폴리이미드 기판에 극저온 Catalytic-CVD로 제조된 니켈실리사이드와 실리콘 나노박막)

  • Song, Ohsung;Choi, Yongyoon;Han, Jungjo;Kim, Gunil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.321-328
    • /
    • 2011
  • The 30 nm-thick Ni layers was deposited on a flexible polyimide substrate with an e-beam evaporation. Subsequently, we deposited a Si layer using a catalytic CVD (Cat-CVD) in a hydride amorphous silicon (${\alpha}$-Si:H) process of $T_{s}=180^{\circ}C$ with varying thicknesses of 55, 75, 145, and 220 nm. The sheet resistance, phase, degree of the crystallization, microstructure, composition, and surface roughness were measured by a four-point probe, HRXRD, micro-Raman spectroscopy, FE-SEM, TEM, AES, and SPM. We confirmed that our newly proposed Cat-CVD process simultaneously formed both NiSi and crystallized Si without additional annealing. The NiSi showed low sheet resistance of < $13{\Omega}$□, while carbon (C) diffused from the substrate led the resistance fluctuation with silicon deposition thickness. HRXRD and micro-Raman analysis also supported the existence of NiSi and crystallized (>66%) Si layers. TEM analysis showed uniform NiSi and silicon layers, and the thickness of the NiSi increased as Si deposition time increased. Based on the AES depth profiling, we confirmed that the carbon from the polyimide substrate diffused into the NiSi and Si layers during the Cat-CVD, which caused a pile-up of C at the interface. This carbon diffusion might lessen NiSi formation and increase the resistance of the NiSi.

Indole Crystallization in Coal Tar Absorption Oil using Methanol Solvent Extraction (메탄올 용매추출을 이용한 콜타르 흡수유 중의 인돌 결정화)

  • Ryu, Heeyong;Lee, Sangheon;Shin, Sungsoon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.166-172
    • /
    • 2022
  • A method of efficiently purifying high value-added indole among components of coal tar absorption oil was studied using a step-by-step process of extraction-distillation-crystallization. The coal tar absorption oil used in this study contains 1.2% naphthalene, 0.1% quinoline, 0.4% isoquinoline, 6.4% indole, 21.0% 1-methylnaphthalene, 48.8% 2-methylnaphthalene, and 11.7% biphenyl as main components. For the separation and purification of indole, methanol was first used as a solvent to separate indole species in the coal tar absorption oil into an extract phase. And then methanol was recovered by distillation. Subsequently, an extraction solution where methanol was removed was mixed with normal hexane, and then crystallized to recover indole having a purity of 99.3%. Based on the experiments of this study, a purification process scheme for indole in coal tar absorption oil was proposed.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Microstructure and Positive Temperature Coefficient of Resistivity Characteristics of Na2Ti6O13-Doped 0.94BaTiO33-0.06(Bi0.5Na0.5)TiO3 Ceramics (Na2Ti6O13를 도핑한 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 세라믹스의 미세구조와 Positive Temperature Coefficient of Resistivity 특성)

  • Cha, Yu-Joung;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Wu-Young;Kim, Dae-Joon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.575-580
    • /
    • 2010
  • The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1 mol%$Na_2Ti_6O_{13}$ doped $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$ (BBNT-NT001) ceramics sintered at various temperatures from $1200^{\circ}C$ to $1350^{\circ}C$ were investigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature ($T_C$). Resulting thermistors showed a perovskite structure with a tetragonal symmetry. When sintered at $1200^{\circ}C$, the specimen had a uniform microstructure with small grains. However, abnormally grown grains started to appear at $1250^{\circ}C$ and a homogeneous microstructure with large grains was exhibited when the sintering temperature reached $1325^{\circ}C$. When the temperature exceeded $1325^{\circ}C$, the grain growth was inhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that $Na_2Ti_6O_{13}$ is responsible for the grain growth of the $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$) ceramics by forming a liquid phase during the sintering at around $1300^{\circ}C$. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity. All the specimens were observed to have PTCR characteristics except for the sample sintered at $1200^{\circ}C$. The BBNT-NT001 ceramics had significantly decreased $\tilde{n}_{rt}$ and increased resistivity jump with increasing sintering temperature at from $1200^{\circ}C$ to $1325^{\circ}C$. Especially, the BBNT-NT001 ceramics sintered at $1325^{\circ}C$ exhibited superior PTCR characteristics of low resistivity at room temperature ($122\;{\Omega}{\cdot}cm$), high resistivity jump ($1.28{\times}10^4$), high resistivity temperature factor (20.4%/$^{\circ}C$), and a high Tc of $157.9^{\circ}C$.