• Title/Summary/Keyword: Offset cancellation

Search Result 72, Processing Time 0.03 seconds

Multiple Access Interference Cancellation for IFDMA Systems with Frequency Offsets (IFDMA 시스템에서 주파수 옵셋에 의한 다중접속간섭 제거 기법)

  • Kim, Jeong-Woo;Won, Yu-Jun;Seo, Bo-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • In this paper, we propose a cancellation scheme of multiple access interference (MAI), which is caused by carrier frequency offset, for the receiver of an interleaved orthogonal frequency division multiple access (IFDMA) uplink system. In the IFDMA systems, carrier frequency offsets introduce adjacent channel interference from other users' subcarriers, which results in performance degradation. In the proposed method, we compensate the carrier frequency offset in time domain and then eliminate MAI by using parallel interference cancellation in frequency domain. Simulation results show that the proposed method is effective in removing the MAI especially when the number of users are large and the MAI severely degrades the system performance.

Effects of Input Harmonics, DC Offset and Step Changes of the Fundamental Component on Single-Phase EPLL and Elimination

  • Luo, Linsong;Tian, Huixin;Wu, Fengjiang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1085-1092
    • /
    • 2015
  • In this paper, the expressions of the estimated information of a single-phase enhanced phase-locked loop (EPLL), when input signal contains harmonics and a DC offset while the fundamental component takes step changes, are derived. The theoretical analysis results indicate that in the estimated information, the nth-order harmonics cause n+1th-order periodic ripples, and the DC offset causes a periodic ripple at the fundamental frequency. Step changes of the amplitude, phase angle and frequency of the fundamental component cause a transient periodic ripple at twice the frequency. These periodic ripples deteriorate the performance of the EPLL. A hybrid filter based EPLL (HF-EPLL) is proposed to eliminate these periodic ripples. A delay signal cancellation filter is set at the input of the EPLL to cancel the DC offset and even-order harmonics. A sliding Goertzel transform-based filter is introduced into the amplitude estimation loop and frequency estimation loop to eliminate the periodic ripples caused by the residual input odd-order harmonics and step change of the input fundamental component. The parameter design rules of the two filters are discussed in detail. Experimental waveforms of both the conventional EPLL and the proposed HF-EPLL are given and compared with each other to verify the theoretical analysis and advantages of the proposed HF-EPLL.

Side-Peak Cancellation Scheme Based on Combination of Sub-Correlations for BOC Signal Tracking (BOC 신호 추적을 위한 부상관함수 결합 기반 주변첨두 제거 기법)

  • Kim, Young-Je;Park, Jong-In;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.367-374
    • /
    • 2012
  • In this paper, we propose a novel cancellation scheme of correlation side-peaks for binary offset carrier (BOC) signals. The proposed scheme is based on a combination of the sub-correlation functions composing the BOC autocorrelation and applicable to both sine- and cosine-phased BOC signals without requiring any auxiliary signal in the receiver. From numerical results, it is confirmed that the proposed scheme provides a better tracking accuracy than the conventional schemes.

A Study on the Offset cancellation circuit using by using dual capacitor (Dual 커패시터를 이용한 Opamp 옵셋 저감 회로에 관한 연구)

  • Kim, Hanseul;Kang, Byung-jun;Lee, Min-woo;Son, Sang-Hee;Jung, Won-sup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.848-851
    • /
    • 2012
  • In this paper, circuit of reducing the offset voltage in Op-amp, effectively, is newly proposed by using dual capacitor. Capacitors and MOS switches are added in proposed circuit to make up for the weak points of previous circuits ofr reducing the offset voltage in auto-zeroing method. Also, it is designed to reduce the offset voltage in high frequency range by using chopping method, effectively. Circuit simulation and layout are executed by TSMC 1.8V, 0.18um process. From the simulation results, it is verified that magnitude of offset voltage is under 5mV and proposed circuit is good for compensation of offset voltage better than previous auto-zeroing method.

  • PDF

A Transimpedance Amplifier Employing a New DC Offset Cancellation Method for WCDMA/LTE Applications

  • Lee, Cheongmin;Kwon, Kuduck
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.825-831
    • /
    • 2016
  • In this paper, a transimpedance amplifier based on a new DC offset cancellation (DCOC) method is proposed for WCDMA/LTE applications. The proposed method applies a sample and hold mechanism to the conventional DCOC method with a DC feedback loop. It prevents the removal of information around the DC, so it avoids signal-to-noise ratio degradation. It also reduces area and power consumption. It was designed in a $0.13{\mu}m$ deep n-well CMOS technology and drew a maximum current of 1.58 mA from a 1.2 V supply voltage. It showed a transimpedance gain of $80dB{\Omega}$, an input-referred noise current lower than 0.9 pA/${\surd}$Hz, an out-of-band input-referred 3rd-order intercept point more than 9.5 dBm, and an output DC offset lower than 10 mV. Its area is $0.46mm{\times}0.48mm$.

Unified DC Offset Cancellation and I/Q Regeneration with Carrier Phase Recovery in Five-Port Junction based Direct Receivers (Five-port 접합을 이용한 RF 수신기를 위한 동시 DC 오프셋 제거와 I/Q 신호 재생 알고리즘)

  • Park, Hyung-Chul;Lim, Hyung-Sun;Yu, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.64-70
    • /
    • 2007
  • This paper presents a novel unified DC offset cancellation and I/Q regeneration for five-port junction based direct receivers. It utilizes the symmetry characteristics of the single-frequency continuous-wave (CW) signal, making it possible that the proposed method can be used regardless of carrier phase offset. The proposed method eliminates the additional DC offset cancellation and reduces the I/Q regeneration parameter estimation time. Since the proposed method employs a single-frequency CW signal independent of the modulation scheme, five-port junction based direct receivers can be used for the demodulation of orthogonal frequency-division multiplexing and continuous phase modulation as well as phase shift-keying.

An Interference Canceller-based Digital On-Channel Repeater to Improve Feedback Channel Estimation and RFP Performance (귀환 채널 추정 및 RFP 성능을 개선한 간섭 제거 기반의 동일 채널 중계기)

  • Choi, Soocheol;Cho, Kiryang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.261-267
    • /
    • 2016
  • In this paper, Method for the phase distortion compensation timing offset and DC eliminator for the pilot component estimation and removal, transmitted and received signal correlation in the delay scheme DAB interference cancellation based on the same channel for using for estimating the feedback signal based on a between for removal for the timing offset compensation It proposes a repeater. This was applied to the ATSC system. The on-channel repeater of the proposed interference cancellation based on the interference removing capability is improved in interference signal is 20dB greater than the primary transmission signal environment via the return channel estimation and improve performance RFP. Accordingly, it was confirmed by simulation that good signal is sent out with the improvement of the ability of the repeater.

Turbo MIMO-OFDM Receiver in Time-Varying Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Jhang, Yi-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3704-3724
    • /
    • 2018
  • This paper proposes an advanced turbo receiver with joint inter-carrier interference (ICI) self cancellation and channel equalization for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over rapidly time-varying channel environment. The ICI caused by impairment of local oscillators and carrier frequency offset (CFO) is the major problem for MIMO-OFDM communication systems. The existing schemes (conjugate cancellation (CC) and phase rotated conjugate cancellation (PRCC)) that deal with the ICI cancellation and channel equalization can't provide satisfactory performance over time-varying channels. In term of error rate performance and low computational complexity, ICI self cancellation is the best choice. So, this paper proposes a turbo receiver to deal with the problem of joint ICI self cancellation and channel equalization. We employ the adaptive phase rotations in the receiver to effectively track the CFO variations without feeding back the CFO estimate to the transmitter as required in traditional existing scheme. We also give some simulations to verify the proposed scheme. The proposed schene outperforms the existing schemes.

An Intercell Interference Cancellation Method for OFDM-based Cellular Systems Using a Virtual Smart Antenna (OFDM 기반의 셀룰러 시스템에서 가상 스마트 안테나를 이용한 셀 간 간섭 제거 기법)

  • Park Kyung-won;Lee Kyu-in;Ahn Jae-young;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1161-1167
    • /
    • 2005
  • In this Paper, a concept of virtual smart antenna (SA) is introduced for orthogonal Sequency division multiplexing (OFDM)-based cellular systems with a frequency reuse factor equal to 1. The OFDM-based cellular system is robust to multipath channels but has a disadvantage that the intercell interference (ICI) caused by adjacent base stations is large at the edge of a cell. In this paper, after deriving the symbol timing offset estimation scheme for the OFDM signal received from multiple base stations in a quasi-static fading channel, the ICI cancellation method based on virtual smart antenna is proposed using the steering vector formed by the symbol timing offset of the desired signal and interference signals.