• Title/Summary/Keyword: Off-line parameter estimation

Search Result 23, Processing Time 0.023 seconds

The study of autopilot system with pre-designed gain schedule (이득 스케쥴을 이용한 항공기 자동조종장치의 구성)

  • 장정순;박춘배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.613-618
    • /
    • 1993
  • This paper presents the aircraft autopilot system with a pre-designed gain schedule. It is mainly consisted of the parameter estimation end the autopilot system design. For off-line parameter estimation, leastsquare methods are investigated. The design of a controller is done in frequenced domain using classical control method and it is designed to satisfy the predetermined requirement such as time constant and transient response. Finally, it is compared with a optimal regulator.

  • PDF

Prediction of Volumes and Estimation of Real-time Origin-Destination Parameters on Urban Freeways via The Kalman Filtering Approach (칼만필터를 이용한 도시고속도로 교통량예측 및 실시간O-D 추정)

  • 강정규
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.7-26
    • /
    • 1996
  • The estimation of real-time Origin-Destination(O-D) parameters, which gives travel demand between combinations of origin and destination points on a urban freeway network, from on-line surveillance traffic data is essential in developing an efficient ATMS strategy. On this need a real-time O-D parameter estimation model is formulated as a parameter adaptive filtering model based on the extended Kalman Filter. A Monte Carlo test have shown that the estimation of time-varying O-D parameter is possible using only traffic counts. Tests with field data produced the interesting finding that off-ramp volume predictions generated using a constant freeway O-D matrix was replaced by real-time estimates generated using the parameter adaptive filter.

  • PDF

A study on non-local image denoising method based on noise estimation (노이즈 수준 추정에 기반한 비지역적 영상 디노이징 방법 연구)

  • Lim, Jae Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.518-523
    • /
    • 2017
  • This paper proposes a novel denoising method based on non-local(NL) means. The NL-means algorithm is effective for removing an additive Gaussian noise, but the denoising parameter should be controlled depending on the noise level for proper noise elimination. Therefore, the proposed method optimizes the denoising parameter according to the noise levels. The proposed method consists of two processes: off-line and on-line. In the off-line process, the relations between the noise level and the denoising parameter of the NL-means filter are analyzed. For a given noise level, the various denoising parameters are applied to the NL-means algorithm, and then the qualities of resulting images are quantified using a structural similarity index(SSIM). The parameter with the highest SSIM is chosen as the optimal denoising parameter for the given noise level. In the on-line process, we estimate the noise level for a given noisy image and select the optimal denoising parameter according to the estimated noise level. Finally, NL-means filtering is performed using the selected denoising parameter. As shown in the experimental results, the proposed method accurately estimated the noise level and effectively eliminated noise for various noise levels. The accuracy of noise estimation is 90.0% and the highest Peak Signal-to-noise ratio(PSNR), SSIM value.

A Study on the Off-Line Parameter Estimation for Sensorless 3-Phase Induction Motor using the D-Axis Model in Stationary Frame (정지좌표계 d축 모델을 이용한 위치센서 없는 3상 유도전동기의 오프라인 제정수 추정에 관한 연구)

  • Mun, Tae-Yang;In, Chi-Gak;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Accurate parameters based on equivalent circuit are required for high-performance field-oriented control in a three-phase induction motor. In a normal case, stator resistance can be accurately measured using a measuring equipment. Except for stator resistance, all machine parameters on the equivalent circuit should be estimated with particular algorithms. In the viewpoint of traditional regions, the parameters of an induction motor can be identified through the no-load and standstill test. This study proposes an identification method that uses the d-axis model of the induction motor in a stationary frame with the predefined information on stator resistance. Mutual inductance is estimated on the rotational dq coordination similar to that in the traditional no-load experiment test. The leakage inductance and rotor resistance can be estimated simply by applying different voltages and frequencies in the d-axis model of the induction motor. The proposed method is verified through simulation and experimental results.

A friction compensation scheme based on the on-line estimation with a reduced model (축소 모델을 이용한 마찰력의 마찰력의 온라인 추정 및 보상기법)

  • Choi, Jae-Il;Yang, Sang-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.174-180
    • /
    • 1996
  • The friction is one of the nonlinearities to be considered in the precise position control of a system which has electromechanical components. The friction has complicated nonlinear characteristics and depends on the velocity, the position and the time. The conventional fixed friction compensator and the controller based on linear control theory may cause the steady state position error or oscillation. The plant to be controlled in this study is a positioning system with a linear brushless DC motor(LBLDCM). The system behaves like a 4th-order model including the compliance and the friction. In this study, the plant model is simplified to a 2nd-order model to reduce the computation in on- line estimation. Also, to reduce the computation time, only the friction is estimated on-line while the mass and the viscous damping coefficient are fixed to the values obtained from off-line estimation. The validity of the proposed scheme is illustrated with the computer simulation and the experiment where the friction is compensated by using the estimation.

  • PDF

Off-line parameter Estimation of Induction Motors for Vector Control in Industrial Field (산업현장에서 벡터제어용 유도전동기의 오프라인 파라미터 추정)

  • 권병기;박가우;신원창;조응상;이진섭;최창호
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.234-238
    • /
    • 1998
  • Parameter estimation of induction motor for vector control presented in this paper can be easily implemented and applied to inverters in the industrial field, because it needs no additional hardware such as voltage sensor and measuring equipment. At first, the stator resistance including switching loss of inverter is measured by simple voltage-current equation. Next, in pre-magnetization of machine by imposing the d-axis constant field-current, q-axis torque current is forced to the machine until its speed feedback reachs to pre-defined level of speed limit. At this time, we can measure the rotor time-constant by decreasing the distorted output-voltage of inverter. At last, stator inductance, transient inductance, and moment of inertia can be measured by the relationship of output voltage, output torque and speed feedback. The validity and usufulness of this method is verified by experimental results.

  • PDF

Stator Flux Vector Control Of Induction Motor using Parameter Estimation (파라메터 추정을 통한 유도전동기의 고정자 자속 기준 벡터 제어)

  • Hahm, Nyun-Kun;Jun, Kee-Young;Kim, Sung-Nam;Lee, Seung-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2123-2125
    • /
    • 1997
  • In the induction motor control, the rotator flux estimation methods are used in the implement vector control of the induction motor instead of the potentical-meter or tacho-meter, a system is very sensitive in noise. In this paper, the parameters that do not affect the stablity of the system were applied in Off-Line tuning methods. In case of the rotator resistor that is sensitive. On-Line tuning methods applied in the steady state. We ascertained that the utility of a theory applied in stator flux orientation vector control through the simulation.

  • PDF

A Study on the Parameter Estimation of an Induction Motor using Neural Networks (신경회로망을 이용한 유도전동기의 피라미터 추정)

  • 류한민;김성환;박태식;유지윤
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.225-229
    • /
    • 1998
  • If there is a mismatch between the controller programmed rotor time constant and the actual time constant of motor, the decoupling between the flux and torque is lost in an indirect rotor field oriented control. This paper presents a new estimation scheme for rotor time constant using artificial neural networks. The parameters of induction motor model organize 2 layer neural to be weight between neuron, which is proposed new in this paper. This method makes networks simple, so its brings not only the improvement in speed but simplification in calculation. Furthermore, it is possible to estimated rotor time constant real time through on-line learning without using off-line learning. The digital simulation and the experimental results to verify the effectiveness of the new method are described in this paper.

  • PDF

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Compensatory cylindricity control of the C.N.C. turing process (컴퓨터 수치제어 선반에서의 진원통도 보상제어)

  • 강민식;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.694-704
    • /
    • 1988
  • A recursive parameter estimation scheme utilizing the variance perturbation method is applied to the workpiece deflection model during CNC turning process, in order to improve the cylindricity of slender workpiece. It features that it is based on exponentially weighted recursive least squares method with post-process measurement of finish surfaces at two locations and it does not require a priori knowledge on the time varying deflection model parameter. The measurements of finish surfaces by using two proximity sensors mounted face to face enable one to identify the straightness, guide-way, run-out eccentricity errors. Preliminary cutting tests show that the straightness error of the finish surface due to workpiece deflection during cutting is most dominant. Identifying the errors and recursive updating the parameter, the off-line control is carried out to compensate the workpiece deflection error, through single pass cutting. Experimental results show that the proposed method is superior to the conventional multi-pass cutting and the direct compensation control in cutting accuracy and efficiency.