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Abstract 
 

This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The 
essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural 
network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is 
capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power 
prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery 
states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high 
accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed 
applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended 
Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means 
of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning 
and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The 
verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.  
 

Key words: Adaptive neuro-fuzzy inference system, Battery monitoring; On-line estimation algorithm, Power prediction 
 

 

I. INTRODUCTION 
 

Among all battery technologies, lithium-ion batteries are 
considered by most of the car manufacturers to meet the 
HEV/EV requirements in the best way, because of their high 
energy and power density. Nevertheless, safety aspects still 
play an important role since lithium-ion batteries are subject to 
power limitations due to physical operation restrictions of the 
battery cells. Information about the state-of-charge (SoC), the 
state-of-health (SoH) and available power of the battery are 
important in order to operate electrical or hybrid vehicles at 

better cost effectiveness, more flexibility, optimal energy 
efficiency and with maximum of safety and comfort for the 
passengers. In order to ensure this lithium-ion battery packs 
must be equipped with a monitoring and safety device, the 
battery management system (BMS) running on a controller 
with integrated measuring electronics. The essential part of the 
BMS, however, are its corresponding algorithms for the status 
determination. Mobility, comfort and precision are central 
expectations that people have in HEV/EV application, 
inevitably leading the battery pack to deliver not only 
significant amount of energy to the loads, but also provide 
required power in every driving situation. To achieve high 
system voltages, many individual cells are connected in series. 
Due to the fact that individual cells in a battery differ in 
manufacturing and diverse progressive ageing, the overall 
available power of the battery pack is limited by individual 
maximum/minimum cell voltage, SOC, temperature ranges and 
finally the maximum current rating, which is compared to the 
previous restrictions authorized by the manufacturer. The 
maximum available power, e.g. for the next 10 to 20 seconds, 
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is also an important input to the energy management system 
(EMS) which controls and optimizes the power flow between 
electric consumers and distributed power sources. In this work, 
the available power is defined as an additional state: 
state-of-available-power (SoAP). For instance, before an 
overtaking maneuver, power prediction helps to avoid 
dangerous situations such as sudden power drops which may 
lead to a critical dynamic condition. In order to prevent a 
sudden voltage drop in the HV-DC link, the maximum 
available discharging/charging power that can be used for 
acceleration/regenerative braking has to be estimated by the 
BMS. This work presents a novel on-line method for an 
accurate state-of-available-power prediction. Due to its 
self-learning design property this adaptive method also 
considers the current ageing state and predicts critical situations 
by means of TFVP to react instantly and anticipates future 
power needs to the EMS. The paper is organized as follows. 
Section II gives an overview about the state of the art 
techniques for power prediction. Further, their disadvantages 
are discussed leading to the motivation to respond with a new 
improved method. Section III gives an overview about the 
supporting algorithms for SOC state estimation, which is an 
important input parameter for TFVP. Section IV describes the 
different specifications of power prediction and the proposed 
SoAP method. At the end of the paper the software-in-the-loop 
test bench setup is explained, which is used for verification 
purposes. 

 

II. STATE OF THE ART PREDICTION OF AVAILABLE 
POWER 

 

Conventional state of the art methods for SoAP prediction 
can be categorized into two groups: 1.) techniques which are 
based on battery characteristic maps and 2.) techniques using 
equivalent circuit models to describe the battery dynamics. For 
the first group, extensive cell tests are carried out in advance to 
generate a dependency between the available power of the 
battery in regard to the battery states (eg. SoC, temperature), 
cell's voltage and power pulse parameters [12],[17]. These are 
then stored in characteristic maps (CM) in a non-volatile 
memory of the electronic control unit (ECU). These tests are 
performed at different SOC levels, at different temperatures 
(e.g. −20 °C up to 60 °C) applying different power pulses to 
cover the entire power spectrum of the cells. Different testing 
standards define the procedure for these hybrid pulse power 
characterization tests (HPPC) [18]–[20]. During the operating 
lifetime of the battery its characteristics change due to ageing 
[21]–[25], and the stored CM for the new battery becomes 
invalid. During operation, the measured battery power is 
compared to the predicted battery power. The estimation error 
𝑃� =  𝑃 � predicted − 𝑃measured   is used to adapt the current 
reference point of the CM in order to improve the power 
prediction for next time. The added value of this technique lies 

in the simple implementation and handling. Here, no complex 
mathematical models have to be derived and therefore fast 
error analysis is possible. However, these advantages do not 
compensate for its weaknesses. Drawbacks here, CM may be 
based on synthetic profiles, which are not able to cover all real 
driving situations leading to static battery characteristics. 
Furthermore, the adaptation process may adapt infrequent 
occurrences of extreme load wrongly. This may be due to the 
fact that various polarization overvoltages which depend on the 
previous load history are not considered. Also, the adaptation 
procedure may lead to poor results in cases where the 
maximum available power has to be predicted, but can only be 
adapted when the maximum power is in fact applied to the 
battery. Their suggestions for adapting and optimizing the 
neighboring operating points are based on smoothing functions, 
which are not motivated on battery non-linear dynamics. The 
requirement of valuable non-volatile memory on the ECU is 
also a major drawback for these methods. Some ideas take 
further steps to make sure that no unnecessary memory usage 
occurs by approximating the CM with empirical functions [17], 
[26]. The second group of techniques is based on simplified 
dynamic battery models [27]–[35] which extrapolates future 
cell voltages with higher accuracy. These approaches differ in 
applied equivalent circuit models and methods for on-line 
parameter estimation. These parameter estimation use various 
versions of the recursive Kalman filter (KF) estimator, such as 
extended Kalman filter (EKF) considering non-linearities, 
sigma-point KF (SPKF) or joint and dual Kalman filter for 
state and parameter estimation. Some assumptions taken for 
KF are the measurement and model inaccuracies (noises) 
which are set to Gaussian probability density function (pdf), 
but may differ in real application. Moreover, the non-linearities 
(NL) are approximated using first-order (EKF) or second-order 
(SPKF) Taylor series expansion. Recent publications only 
apply NL to the SOC-OCV relation [37]–[39]. For a reliable 
power prediction using ECM also the current dependency has 
to be considered additionally. The general knowledge about the 
covariances and noises has to be known a priori. Wrong values 
may lead to poor convergence and slow adaptation. A further 

Fig. 1. Overall SoAP estimation with supporting algorithms. 
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possibility for integrating on-line adaptation of the ECM 
parameters is based on recursive least squares estimation (RLS) 
[40], [41] to fit the measured data to the ECM. To reduce the 
matrix operations a weighted recursive least squares (WRLS) 
estimation was proposed in [42], [43]. Both methods generally 
fit the data but without considering the current dependency 
which makes the ECM approach less reliable. Furthermore, the 
published work demonstrates the methods basically at room 
temperatures, where the current dependency of the resistance is 
less crucial to the battery dynamics. In practice these 
disadvantages of the described state of the art techniques cause 
defective fulfillment in accuracy at low temperatures and aged 
state which motived us to design a new technique. Our method 
provides a robust, adaptive SoAP prediction algorithm using a 
self-learning neuro-fuzzy inference system (ANFIS). 

 

III. ROBUST EXTENDED KALMAN FILTER BASED SOC 
CORRECTION  

 

For the efficient utilization and safe operation, an accurate 
determination of the SoC is required, in particular for the 
introduced method in available power prediction. The 
presented battery monitoring system for SoAP estimation 
consists of a set of different algorithms illustrated in Fig. 1 and 
adapted from [1]. It combines the algorithms OCV method, full 
charge detector (FCD)/dynamic load observer (DLO), and as 
key function the Ah-balancing (AhB) method with REKF 
algorithm. At present, AhB is the most commonly used method 
for SoC estimation, since it is the most accurate technique for 
short-term calculations and defined as  

 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡0) +
1
𝐶𝑁

� 𝐼𝑏𝑎𝑡(𝑑𝜏) ∙ 100%

𝑡0+𝑡

𝑡0

           (1) 

 

where 𝑆𝑜𝐶(𝑡0) is the initial SoC, 𝐶𝑁 the nominal capacity, 
and 𝐼𝑏𝑎𝑡  the charging/discharging current. The dynamic 
measurement of battery current and its time integration 
provides directly the information of SoC. The requirement for 
long-term accuracy depends on terminal measurement 
equipment. Errors due to noise, wide range in resolution or 
rounding leads to accumulated errors. AhB will gradually lose 
precision the longer the calculation lasts. Supporting 
algorithms are necessary and have been introduced in [1] and 
adapted by means of REKF for SoC recalibration. As 
mentioned earlier, KF works well when system model and 
noise statistics are known a priori. Wrong assumptions or 
changes during operation may lead to degradation of filter 
estimates. Besides analyzing the estimative hidden state SoC, 
we implement the REKF more robust to uncertainties in the 
system matrix, the measurement matrix, and noise covariances. 
It also provides dynamically the estimation error bounds (EB). 
The on-line procedure can be broadly depicted as follows: The 
OCV is measured at the battery terminal after a rest time 𝑡0, the 

SoC value SoC(𝑡0) is then calculated according to the OCV 
procedure. 𝑆𝑜𝐶(𝑡0)  is updated between 𝑡0  and 𝑡1 by the 
REKF method to obtain 𝑆𝑜𝐶(𝑡1). 𝑆𝑜𝐶(𝑡2) is then determined 
using the AhB method using the initial SoC value of 𝑆𝑜𝐶(𝑡1) 
and corrected again by REKF and supporting algorithms [1]. 
These steps are constantly executed until the battery reaches 
fully charged or discharged state. 
 
A. Design of Robust Extended Kalman Filter 

 Kalman filter is an algorithm to estimate the inner states of a 
dynamic system recursively by means of a set of mathematical 
equations [6]. The optimal solution only holds when the model 
is accurate while the system- and measurement noise statistics 
are known. Unfortunately, these underlying assumptions are in 
fact seldom met. Commonly, the model is faced with 
non-deterministically describable disturbances (process noise 
(𝑤𝑘) and measurement noise (𝑣𝑘) [5]. Therefore, we design the 
filter in such a way, that it becomes more robust to 
uncertainties in covariances 𝑤𝑘~(0,𝑄) and 𝑣𝑘~(0,𝑅). The 
filter is designed to guarantee the finite upper and lower bound 
on the estimation error for SoC recalibration. The considered 
uncertain system is represented by 
 

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝑤𝑘                                         (2) 
   𝑦𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘                                   (3) 

 

where 𝑥𝑘 ∈ 𝑅𝑙  and 𝑦𝑘 ∈ 𝑅𝑚  represent the state and 
measurement vectors at time step 𝑘 , 𝐹  and 𝐻 states the 
process and receptively the measurement matrix. These two 
noise processes must be mutually uncorrelated, zero mean, 
respectively, and they must have a white Gaussian probability 
distribution [2]. The structure of the filter can be classified into 
three types of equations, initialization, prediction and 
estimation as illustrated in Table I. REKF is designed in such a 
way, that the relation between process/measurement noise and 
estimation error is less than the tuning parameter ξ described in 
Table I. Therefore, ξ states the relative weight given to reduce 
the variation of the estimation error due to process or 
measurement noise fluctuations and chosen in such a way, that 
the performance and robustness is balanced [3],[14]. When 
𝑅 = 0  (no measurement noise), the error covariance 𝑃 
becomes [3] 
 

𝑃𝑅=0 = (𝐼 − 𝐾𝐻)𝐹𝑃𝑅=0𝐹T(𝐼 − 𝐾𝐻)T + 
                                  (𝐼 − 𝐾𝐻)𝑄(𝐼 − 𝐾𝐻)T               (4) 
and setting 𝑄 = 0  (no process noise), equation  for error 
covariance 𝑃 becomes [3] 
 

𝑃𝑄=0 = (𝐼 − 𝐾𝐻)𝐹𝑃𝑄=0𝐹T(𝐼 − 𝐾𝐻)T + 𝐾𝑅𝐾T      (5) 
 

Therefore, the true estimation error covariance can be 
described as the sum of the assumed covariance and the 
difference. Then the change in the estimation error covariance 
is described as [3] 
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TABLE I 
ROBUST EXTENDED KALMAN FILTER EQUATIONS [3], [14] 

Type Equation 
Initialization 
(𝑘 = 0) 

𝑥�0+ = E[𝑥0] 
𝑃0+ = E[(𝑥0 − 𝑥�0)(𝑥0 − 𝑥�0)2] 

Computation 𝑘 = 1,2,3, … 
Compute partial derivative matrices 

𝐹𝑘−1 = 𝜕𝑓𝑘−1
𝜕𝑥

�
𝑥�𝑘−1
+

, 𝐿𝑘−1 = 𝜕𝑓𝑘−1
𝜕𝑤

�
𝑥�𝑘−1
+

Prediction 𝑃𝑘− = 𝐹𝑘−1𝑃𝑘−1+ 𝐹𝑘−1𝑇 + 𝐿𝑘−1𝑄𝑘−1𝐿𝑘−1𝑇  
𝑥�𝑘− = 𝑓𝑘−1(𝑥�𝑘−1+ , 𝑢𝑘−1, 0) 
Compute partial derivative matrices 

𝐻𝑘−1 = 𝜕ℎ𝑘
𝜕𝑥
�
𝑥�𝑘
−
, 𝑀𝑘 = 𝜕ℎ𝑘

𝜕𝑣
�
𝑥�𝑘
−

Measurement 
update 

𝑥�𝑘+ = 𝑥�𝑘− + 𝐺𝑘[𝑦𝑘 − ℎ𝑘(𝑥�𝑘−, 0)] 
𝑃𝑘+ = (𝐼 − 𝐺𝑘𝐻𝑘)𝑃𝑘− 

Kalman gain 
Matrix 

𝐺𝑘 = 𝑃𝑘−𝐻𝑘T(𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑀𝑘𝑅𝑘𝑀𝑘
T)−1 

Tuning 
parameter ξ 

𝜌Tr(𝑃) + (1 − 𝜌)E{[Tr(∆𝑃)]2} 

∆𝑃 = 𝛼𝑃𝑅=0 + 𝛽𝑃𝑄=0  (6) 

where 𝛼  and 𝛽  are random variables with variances with 
𝜎𝑅=02 , 𝜎𝑄=02 . From these characteristics, the mean of the change 
of the tuning parameter becomes zero, while the variance is 
𝜎𝑅=02 Tr2(𝑃𝑅=0) + 𝜎𝑄=02 Tr2�𝑃𝑄=0� [3]. Therefore, we are able 
to make the filter robust to uncertainties by minimizing the 
variance of the tuning parameter. To describe it differently, (1 - 
ρ) is the weighting factor to reduce the variance of 𝑃 due to 
uncertainty changes in 𝑅  and 𝑄  [3]. Decreasing 𝜌  will 
enhance the robustness of the filter. To determine the SoC, a 
dynamic model of the battery in the form of state variable 
equation is required. Here, the generic model consists of a 
voltage source representing an open circuit voltage (OCV) 
which is a function of 𝑆𝑜𝐶. The 𝑅𝐶 element accommodates 
both the charge transfer, as well as the double layer capacitance 
where 𝑅CT and 𝑅DL are a function of 𝑆𝑜𝐶, 𝑇, and current 
flow direction. The ohmic resistance 𝑅i occurs instantly and is 
also depended on 𝑆𝑜𝐶, 𝑇, and current flow direction.  

At first, for the described battery model, the state signals and 
the output signals are identified. The state vector contains the 
states 𝑆𝑜𝐶 and 𝑉RC while the output vector only consists of 
the cell voltage. The state-space equation is summarized in 
equation (7) 

�
𝑆𝑜𝐶𝑘+1
𝑉𝑅𝐶 ,𝑘+1

� = �
1 0
0 1 − 𝑇s

𝑅CT𝐶DL
� �
𝑆𝑜𝐶𝑘
𝑉RC,𝑘

� �

𝑇s
𝐶N
𝑇s
𝐶DL

� 𝐼𝑘 + �
𝑤1,𝑘
𝑤2,𝑘

�   (7)

where the OCV and all overvoltages are described as 

𝑦𝑘 = 𝑂𝐶𝑉(𝑆𝑂𝐶𝑘) + 𝑉RC,𝑘 + 𝑅i,𝑘𝐼𝑘   (8) 

The expression 𝑑𝑂𝐶𝑉
𝑑𝑆𝑜𝐶

�
𝑘
is calculated according to (9), whereas 

an infinite impulse response filter (IIR) is applied to avoid 
ripples.  

𝑑𝑂𝐶𝑉
𝑑𝑆𝑜𝐶

�
𝑘

=
𝑂𝐶𝑉(𝑆𝑜𝐶𝑘−) − 𝑂𝐶𝑉(𝑆𝑜𝐶𝑘−1+ )

𝑆𝑜𝐶𝑘− − 𝑆𝑜𝐶𝑘−1+  (9) 

Kalman filtering shall not provide an alternative SoC value to 
replace the AhB, instead error bounds (EB) are calculated to 
provide limits for the AhB SoC algorithm to allow 
recalibration. For that purpose, the state estimate error 
covariance matrix is used, which is a measure for the 
uncertainty of the state estimate [5]. The smaller the noise is, 
the more reliable are the state estimates. Consequently, the 
determination of the filter parameters such as 𝑄  and  𝑅 
plays an important role. The latter one can be determined very 
well, for instance by off-line measurement. The process noise 
covariance can hardly be measured but may be obtained by 
means of system identification using a further Kalman filter in 
off-line mode [16]. The corresponding error bounds ∆𝑆𝑜𝐶𝑘  
at each time step are calculated in equation (10). 

 ∆𝑆𝑜𝐶𝑘 = �diag�𝑃𝑥�,𝑘 , 1� ∙ 3 ∙ 𝜉𝑆𝑜𝐶 + 

�𝑑𝑖𝑎𝑔�𝑃𝑥�,𝑘 , 2� ∙ 𝑑𝑂𝐶𝑉
−1

𝑑𝑆𝑜𝐶
�
𝑘
∙ 3 ∙ 𝜉𝑉RC    (10) 

The multiplication by three provides a confidence interval of 
99.7%  (three times standard derivation 𝜎𝑥 = �Var(𝑥) ). 
These EB may not be exact, since the noises (especially 
process noise) are estimated, but they change dynamically 
according to estimate uncertainty, and by overestimating the 
noises they are a conservative measure to recalibrate the SoC 
values from AhB. The tuning parameters 𝜉𝑆𝑜𝐶and 𝜉𝑉𝑅𝐶  are 
included as weighting in order to adjust the EB as described 

earlier. The EB are smaller for high 𝑑𝑂𝐶𝑉
𝑑𝑆𝑜𝐶

�
𝑘

values, i.e. high 

voltage variations lead to smaller corresponding variations of 

Fig. 2. Recalibration of SoC using REKF (wrong initial 
SoC=80 %). 
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SoC. EB change dynamically and compensate errors caused by 
instability due to corrupted model parameters, since the 
uncertainties and the error variances will increase significantly, 
if the system becomes unstable. For the verification of the 
Kalman filter algorithm a dynamic current profile is used. In 
Fig. 2 the procedure of recalibration is exemplified where the 
AhB values are forced to be within the Kalman filter limit 
bounds. The correct initial 𝑆𝑜𝐶init is 100%, but for the AhB 
algorithm this value was wrongly set to 80%  and is 
represented by 𝑆𝑜𝐶AhC,alg. The reference value 𝑆𝑜𝐶AhC,ref is 
calculated in parallel by a further Ah balancing algorithm with 
correct initial 𝑆𝑜𝐶init value. After roughly 400 seconds the 
𝑆𝑜𝐶  error between 𝑆𝑜𝐶AhC,alg  and 𝑆𝑜𝐶AhC,ref  could be 
reduced to 6% from originally 20%, after 1750 seconds the 
error reaches a value of 1.6% (measurement error non-zero 
mean). Thus, a reliable 𝑆𝑜𝐶 value can be provided as input to 
the power prediction algorithm in Fig. 1. 

IV. STATE-OF-AVAILABLE-POWER PREDICTION

First the definition of the overall reference scenario is 
presented before the new method for power prediction is 
introduced. It was mentioned that cell limits should be met in 
order to maintain the cell performance. These limits are defined 
by individual cell voltages, maximum charging/discharging 

current, temperature and SoC. Consequently, power prediction 
refers to the task of predicting, whether or not the safe 
operation area of the cell will be left, if a certain required 
power pulse is injected into the cell. For the electrical vehicle 
application the short forecasting horizon for power prediction 
is between a few seconds (e.g. start-stop capability for hybrids) 
up to half a minute (overtaking maneuver). In comparison, SoC 
and temperature values change with a significantly higher time 
constant, thus play a subordinate role in power prediction 
within this given time period. Therefore, 
state-of-available-power can be defined as the maximum power 
that can be applied to the battery at the current state, on 
condition that neither minimum/maximum individual cell 
voltages nor maximum rated cell charging/discharging current 
exceed the predefined limits. However, different possible 
reference scenarios (charging/discharging the cell with constant 
current (CC), constant voltage (CV) or a constant power (CP)) 
have to be considered since SoAP prediction significantly 
depends on future battery load behaviour and is therefore not 
predictable. These reference scenarios are fictitious events 
appearing rather seldom during battery operation in electrical 
vehicles. To mention only one, a CC situation would imply a 
infinite current change rate at the beginning of the pulse. 
Therefore the reference scenario for power prediction is based 
on constant current pulse and considered as the worst case 
scenario because of the following reasons: 

• Current can be easily controlled and limited by the use
of power electronics.

• Represents charging/discharging events with constant
power, when voltage change during constant current
pulse is negligible.

For that, the differences between pulses with constant power 
and pulses with constant current are illustrated in Fig. 3 and Fig. 
4. It is shown that in order to keep the power constant, the
current must be regulated during a pulse, because the cell 
voltage changes. Thus, for the discharging direction the current 
rises in amount due to the decrease of the cell voltage and for 
the charging direction the current behavior is exactly the 
opposite. As a result, the product of 𝐼𝑐𝑒𝑙𝑙  and 𝑉𝑐𝑒𝑙𝑙  is constant 
and the same applies to the power. In accordance with the 
previous considerations, the power decreases in amount during 
a negative current pulse, since the cell voltage drops while it 
increases for positive pulses. The longer a pulse lasts the higher 
is also the power change. In order to consider pulses with 
constant current and in order to grant a safety margin, the 
transformation of current pulses into power pulses is described 
as following: 

𝑃pulse = 𝐼pulse ∙ 𝑉now     for     𝐼pulse,CHA  >  0 A         (11) 
𝑃pulse = 𝐼pulse ∙ 𝑉prog    for     𝐼pulse,DIS    <  0 A        (12) 

Fig. 3. Cell behaviour of a power pulse. 

Fig. 4. Cell behaviour of a current pulse. 
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Fig. 5. (a) In case 1 the maximum operating voltage Vmax is  
reached at the end of the charging current pulse with ICH <
 Imax ; (b) in case 2 the maximum operating voltage is not 
reached (VCH <  Vmax) at the end of the maximum charging 
current with ICH =  Imax. 

𝑉now is the is the present cell voltage at the moment of the 
power prediction, which is also the lowest voltage throughout 
the whole pulse duration. Instead of 𝑉now, "𝑉now + 𝐼now ∙ 𝑅𝑖" 
could be chosen as well. This term leads to a smaller safety 
margin, but higher calculated power magnitudes. 𝑉prog is the 
result of the voltage prognosis and it also refers to the lowest 
voltage during a discharging pulse. These transformation 
equations guarantee that a pulse with constant power 𝑃pulse 

does not cause violation of the cell limit restrictions, presuming 
that the corresponding pulse with constant current 𝐼pulse can be 
safely applied to the cell. The reason is that for 𝑃pulse and for 
equal pulse duration, the current is in amount equal or less than 
𝐼pulse in any case throughout the whole pulse, and the voltage 
change is less in amount as well. The same considerations are 
applicable for the transformation of power pulses into current  
pulses: 

𝐼pulse =
𝑃pulse
𝑉now

 for     𝐼pulse,CHA  >  0 A  (13) 

𝐼pulse =
𝑃pulse
𝑉EOD

   for     𝐼pulse,DIS  <  0 A  (14) 

The difference is that 𝑉prog does not exist, since the power 
prediction algorithm works with current 𝐼pulse  as input 
variable. Instead of 𝑉prog, the end-of-discharge voltage 𝑉EOD 
is chosen, which is the lowest safe cell voltage. 
Here, the highest possible current 𝐼pulse must be identified in 
order to test it with the voltage prognosis algorithm. If the test 
is positive, 𝑃pulse can be applied to the cell in any case. Hence, 
the denominators must refer to the smallest possible cell 
voltages during the pulse. The four possible cases at constant 
current pulse are illustrated in Fig. 5 and 6. Using equations 
above, the state-of-available-power prediction can be 
simplified to the problem of "current" prediction. 

A. Adaptive Neuro-Fuzzy Inference System 
Fuzzy inference systems (FIS) and artificial neural 

networks (ANN) are well-known methods for modeling 

Fig. 6. (a) In case 3 the minimum operating voltage 𝑉min is 
reached at the end of the discharging current pulse with 
𝐼DIS <  𝐼min ; (b) in case 4 the minimum operating voltage 
(𝑉min) is not reached for 𝐼DIS =  𝐼min. 

Fig. 7. Final ANFIS structure, both for negative and positive 
currents. 
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non-linear systems. Fuzzy inference systems can "fuzzily" 
incorporate human knowledge in modeling in the kind of 
if-else statements, while neural networks possess the capability 
of learning by the use of measurement samples in order to 
adapt the input-output mapping to changing conditions. 
Combined to ANFIS, this is a highly effective tool to map 
input signals to output signals of a non-linear, uncertain or 
ill-defined system and can be used as a approximator for the 
battery system [13]. 
ANFIS Architecture: Fig. 7 illustrates the designed ANFIS with 
five input variables, three rules, three membership functions 
per input and one output for TFVP. The applied first-order 
Takagi-Sugeno type [7] of FIS, the output fuzzy sets are 
represented by linear functions of input variables. These 
function outputs are weighted using the degrees of support of 
every rule. The rule base of this ANFIS contains three 
IF-THEN rules, whereas each output leaving Layer 1 
correspond to one rule exemplarily expressed as:  
 

𝑅𝑢𝑙𝑒 1: If  𝐱  is  𝐀𝟏 and  𝐲  is  𝐁𝟏, then  𝒇𝟏 = 𝑝1x + 𝑞1y + 𝑟1 
𝑅𝑢𝑙𝑒 2: If  𝐱  is  𝐀𝟐 and  𝐲  is  𝐁𝟐, then  𝒇𝟐 = 𝑝2x + 𝑞2y + 𝑟2 
𝑅𝑢𝑙𝑒 3: If  𝐱  is  𝐀𝟑 and  𝐲  is  𝐁𝟑, then  𝒇𝟑 = 𝑝3x + 𝑞3y + 𝑟3 

 

here x, y, ..., are the input variables, A𝑖, B𝑖 , ..., are the fuzzy 
sets, fi are the outputs within the fuzzy region specified by the 
fuzzy rule, 𝑝𝑖 , 𝑞𝑖 and 𝑟𝑖 are the network parameters that are 
determined during training and adapted while battery changes 
its characteristics (ageing process). The parameters largely 
determine the mapping behavior of the ANFIS and thus must 
be trained in order to achieve good performance. The 
individual layers are designed as following [8],[9]. 
Layer 1: For each node i in this layer, three parameters need to 
be stored. Each parameter set defines an input membership 
function expressed by following equation: 
 

𝜇A𝑖(𝑥) =
1

1 + ��𝑥 − 𝑐𝑖
𝑎𝑖

�
2
�
𝑏𝑖

                     (15) 

 

where 𝑥  is the first input variable to the ANFIS. The 
membership function in equation (15) describes to which 
degree input x belongs to fuzzy set A𝑖. The parameter sets 
{𝑎𝑖, 𝑏𝑖, 𝑐𝑖} determine the shapes of the membership functions 
(here: bell-shaped). 
Layer 2: Fuzzy operators are applied in order to resolve the 
terms in the antecedent part of each rule realized by 
multiplication operators. Equation (16) formulates the firing 
strengths as 
 
 

𝜔𝑖 = 𝜇A𝑖(𝑥) 𝖷 𝜇B𝑖(𝑥) 𝖷… ,    for   i = 1,2,3.       (16)  
 

Layer 3: The label N within each node in this layer expresses 
the normalized firing strength of a rule, which is calculated in 
the respective nodes according to equation (17):  
 

𝜔𝑖,𝑛 =
𝜔𝑖

𝜔1 + 𝜔2 + 𝜔3
,    for  𝑖 = 1,2,3.          (17) 

 

Layer 4: Here, the output of each rule is calculated based on 
the corresponding normalized firing strength from layer 3. The 
number of nodes is just equal to the number of (normalized) 
firing strengths, which itself is equal to the number of rules in 
the rule base. The node function of node i in this layer is 
expressed by following equation (implication):  

 

Fig. 8. Current ripple measurement across the battery of a vehicle. 

Fig. 9. Filtered current profile from noisy driving cycle using 
second-order low-pass filtering. 

Fig. 10. Filtered voltage response from noisy driving cycle using 
second order low-pass filtering. 
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𝑂𝑖4 = 𝜔𝑖,𝑛𝑓𝑖 = 𝜔𝑖,𝑛(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)          (18) 
 

where 𝑂𝑖4  is the is the output of rule i in layer 4. The 
parameter set {𝑎𝑖, 𝑏𝑖 , 𝑐𝑖} describes the coefficients of a linear 
function of the input signals �here: 𝐼pulse, 𝐼 × 𝑡, 𝑡𝑎𝑣, 𝑆𝑜𝐶,𝑇� 
Layer 5: In layer 5 the overall output is calculated by summing 
up every rule output from layer 4 (aggregation).  
 

𝑂𝑖5 = � 𝜔𝑖,𝑛𝑓𝑖 =
∑ 𝜔𝑖𝑓𝑖𝑖

∑ 𝜔𝑖𝑖𝑖
.                        (19) 

 

ANFIS Learing Algorihm: A hybrid learning method is applied 
from [8] and further adapted according to speed and stability, 
which is to update the consequent parameters using the fast 
converging but computationally demanding least square 
estimate (LSE) in terms of Kalman filtering method after a 
forward pass of node outputs with fixed premise parameters. In 
the second step, the premise parameters are identified by 
backward passing the error rates and using gradient descent 
method in order to locate the minimum of the output error. 
Here, the modification, which is called Levenberg-Marquardt 
method [4],[11], is used. This method is much faster regarding 
convergence time. 
Batch (Off-Line) Learning: In order to find an ANFIS which 
approximates the behavior of the system under consideration to 
a high degree of correctness the appropriate input signals must 
be identified at first. For this, the correlation analysis method 
well-known from the field of neural networks is used. Here, 
taking combinations of applicable input signals which result in 
the smallest root mean squared error (RMSE) after one single 

pass of least square estimation [10] are chosen as ANFIS input 
candidates. The root mean square error is calculated according 
to equation (20) [10] 
 

RMSE = �
1
𝑛
� (anfisout − real_data𝑜𝑢𝑡)2

𝑛

𝑖=1
      (20) 

  

with 𝑛 = number of training data. The final minimum RMSE 
value is reached for the combination of the input variables 
𝐼pulse, 𝐼 × 𝑡, 𝑆𝑜𝐶,𝑇  and time averaged voltage 𝑡𝑎𝑣(𝑡) =
1
𝑡 ∫ 𝑉cell 𝑑𝜏

𝑡
0 . Thus, the training data should be applied to the 

ANFIS consecutively epoch by epoch either until the RMSE 
error does not change significantly or until the cross validation 

Fig. 11. On-line training results for time forward voltage prognosis (TFVP) with stop criterion ∆𝑡 = 20 s, RMSE = 0:0192 V. 

Fig. 12. Software-in-the-loop setup for SoAP verification tests. 
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with checking data results in RMSE increase in comparison to 
the previous epoch. The ANFIS structure is illustrated in Fig. 7 
and the TFVP results with prognosis stop criterion of 
∆𝑡 = 20s and 𝐼pulse > 10 A  are shown in Fig. 11.  
Over-fitting and Feature Grid Filtering: Over-fitting is a 
problem especially if the input and output data are noisy. The 
danger that noisy data are adapted more heavily than signal 
data exists. Furthermore, a problem will occur, if not the entire 
input space (universe of discourse) of one input variable is 
properly trained, but only a small region. This means, the 
training data might be unequally distributed. As a result, the 
ANFIS might be over-fitted to a certain region of the input 
space. As a result, the ANFIS might lose “information” of 
former training data. Consequently, at each time, when new 
training data are provided, it must be decided, if these data 
should be used or not. Also the training “intensity” should be 
varied depending on the reliability of the training data by 
adjusting the training parameters step size (gradient descent 
method), 𝜌 (Levenberg-Marquardt) and the forgetting factor 
𝜂 (Kalman filter). In order to solve this problem, a feature grid 
filter is implemented. Basically, a two-dimensional grid map 
representing small ∆𝐼 areas in row direction (x-axis) and small 
∆𝑡  areas in column direction (y-axis). Every grid element 
contains information about the frequency of used training data, 
which matches the respective grid element. Finally, in order to 
determine the maximum possible power/current magnitude for 
a pulse of defined duration, the prediction algorithm must be 
run iteratively. For each new run, the magnitude of the 
power/current is changed towards the maximum possible value 
step by step using the bisection method. Signal pre-filtering for 
on-line data processing: In a batch learning process, which is 
carried out off-line, one training epoch is carried out for each 
combination of input candidates. The advantage of batch 
learning is that the training algorithm can be applied to a whole 
set of training data pairs at one go. Here, the ANFIS was 
trained with dedicated pulses and compared to desired voltage 
responses. However, in modern vehicles the current/voltage 
signals are disturbed by noise, overlaid spurious signals 
through switching on various loads and by the driving 
behaviour of the driver (uneven load through random 
acceleration/braking). A more detailed look at the development 
of the spectrum over time is shown in Fig. 8 as a spectrograma. 
As can be seen, there are not many distinct strong peaks at a 
frequency that could be used to adapt the ANFIS parameters. 
To provide the best possible training data, the noisy signal has 
to be low-pass filtered to identify strong pulse data from input 
signals which updates the ANFIS at each new pulse detection. 
The on-line filtered training signals are depicted in Fig. 9 and 
10. The current profile simulates real driving conditions 
(acceleration, recuperation, stops) with high frequency noise. 
That current signal is filtered using an second-order IIR filter. 
The sample time is chosen to 100ms, i.e. every 100ms one 
training data pair is acquired (if available and required) and one 

output value for cell voltage prognosis is provided by the 
ANFIS model as long as a valid pulse is active. The 
requirements for a valid pulse are summarized in the following 
list, with time index “k” referring to the time steps following 
after the pulse detection, i.e. the time step, at which a new pulse 
is detected, is not considered: 
 

• 𝐼𝑘 − 𝐼𝑘−1 ≤ 𝑑𝐼thr with 𝑑𝐼thr = 3 A 
• 𝐼𝑘 ≥ 𝑑𝐼thr with 𝑑𝐼thr = 10 A 
• 𝑡min ≤ ∆𝑡 ≤ 𝑡max with 𝑡min = 3 s and 𝑡max = 20 s 
• 𝑡𝐼,samp − 𝑡𝑈,samp < 𝑡thr, i.e. current and corresponding 

voltage sampling should be as close as possible; here 
𝑡𝑡ℎ𝑟=sample time. 

• 𝑇𝑘 − 𝑇𝑘−1 ≤ 𝑑𝑇thr , i.e. temperature should not change 
significantly during pulse. 

• Operation range of battery cell not violated. 
 

V. REAL-TIME SOFTWARE-IN-THE-LOOP TESTS 
 

The initial problem was to develop an adaptive algorithm, 
which can predict the available power under present 
condition. The goal of SIL tests is to verify the functionality 
of the proposed algorithm in real-time environment. The 
individual components (Fig. 12) are the cell controller board 
(in-house development) for gathering sensor information 
from battery cell (current, cell voltage and temperature), 
MicroAutoBox (MABX) as rapid control prototyping (RCP) 
hardware [15] for code testing, and battery cell under test 
(Kokam 53Ah Lithium Polymer SLPB120216216) placed in 
a temperature chamber (Binder MK 240) and connected to a 
universal battery tester (Digatron UBT) which performs 
charging and discharging in accordance to the programmed 
driving cycle. The overall system is interconnected via 
CAN-bus. A recorder function is incorporated in the 
MicroAutoBox, which captures and stores data during 
runtime. All algorithms implemented in the MABX run in 
real-time. The test profile shown in the top of Fig. 9 consists 
of 4 hr dynamic current profile followed by a rest time of 3 hr 
and CC/CV-charging. At first, the initial ANFIS was trained 

Fig. 13. Predicted maximum discharging power for driving 
cycle recorded by MABX. 
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for three epochs beforehand. Secondly, the initial error 
covariance matrix elements were set to higher values in order 
to simulate greater error oscillations. As a result, the 
monitoring system shows the ability to filter out the 
quantization noise so that an over-fitting due to noise can be 
avoided.  The voltage prognosis algorithm proposed can test, 
whether certain power pulses can be injected or not, by 
transforming them to current pulses at first. In order to 
determine the maximum possible power/current magnitude 
for a pulse of defined duration, the prognosis algorithm must 
be run iteratively. For each new run, the magnitude of the 
power/current is changed towards the maximum possible 
value step by step. This technique is called bisection method. 
Firstly, the maximum battery certified charging/discharging 
current is applied and the corresponding voltage responds is 
predicted. Are the voltage limits violated, the maximum 
charging/discharging current rate is reduced, followed by a 
new voltage prognosis. For the discharge event, when the 
new prognostic voltage response does not be continued below 
the voltage recommended for the discharge time, a higher 
current rate may be applied and found in the interval 

�𝐼max
2

, 𝐼max�. In case the prognostic voltage response continues 
below the final discharging voltage, the maximum discharge 

current has to be found in the interval �0, 𝐼max
2
�. Applying a 

ten-degree system for interval bisection following resolution 
is possible: 
 

�
1
2
�
10

∙ 100 A = 0.098 A                  (21) 
 

The maximum discharging power 𝑃maxDIS  max can be 
calculated as following: 
 

𝑃maxDIS(𝑡) =  𝑉prog(∆𝑡, 𝑆𝑜𝐶, 𝐼max,𝑇) ∙ 𝐼max(∆𝑡)    (22) 
 

and the maximum charging power 𝑃maxCHA: 
 

𝑃maxCHA(𝑡) =  𝑉prog(0 s, 𝑆𝑜𝐶, 𝐼max,𝑇) ∙ 𝐼max(∆𝑡)    (23) 
 

The results in Fig. 13 show the maximum available 
discharging power for ∆𝑡 = 10 s  and ∆𝑡 = 20 s . The 
battery gets discharged with a maximum current of 100 A 
(specified maximum discharging current by manufacturer: 
265 A). It can be noticed that the first 2.5 hr the minimum 
discharging voltage is not violated and the discharging power 
is only limited by the battery tester. Therefore, the declining 
maximum discharging power (0 − 2.5 hr) is attributable to 
the fact of reduced open circuit voltage due to charge 
transfer. 
 

VI. CONCLUSION 
 

A novel method for power prediction of a lithium-ion cell 

was proposed, which is based on time forward voltage 
prognosis (TFVP) of the cell voltage. This approach 
incorporates the use of an adaptive neuro-fuzzy inference 
system (ANFIS). The network parameters are fully adaptable 
on-line to the present states of the battery (SoC, SoH, 
temperature). The adaptability is credited to learning 
algorithms from ANN theory. The capability of real-time 
operation of the overall system was verified on a SIL test 
bench showing very good results. The inaccuracy of the 
algorithms due to process and measurement noise are handled 
to a certain degree even in real-time environment using 
ill-defined measurement equipment. Commonly, a 
compromise between inaccurate measurement equipment and 
high algorithm performance was found. 
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