• Title/Summary/Keyword: Ocean-based approach

Search Result 490, Processing Time 0.029 seconds

Wind spectral characteristics on fatigue responses of towerbase and moorings of a floating offshore wind turbine

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.191-218
    • /
    • 2019
  • The tower-platform interface and mooring system of floating offshore wind turbines (FOWTs) are some of the most critical components with significant influences on overall project costs. In addition to satisfying strength requirements, it is typical and vital to meet fatigue criteria for a service life of 25 years or more. Wind spectra characteristics considered in analysis can penalize fatigue designs, leading to unnecessary costs. The International Electrotechnical Commission (IEC, 2009) recommends the use of site-specific wind data (spectrum, turbulence intensity, etc.) in design of FOWTs, but for offshore sites it is often the case that such data is unavailable and land-based data are used as surrogates in design. For such scenarios, it is worth investigating whether such alternative approach is suitable and accurate, and understanding the consequence of the selection of wind spectral characteristics on fatigue design. This paper addresses the impact of the subsequent selection on fatigue responses of towerbase and mooring system in a FOWT, as a sequel to the paper by Udoh and Zou (2018) which focused on impacts on strength design. The 5 MW semi-submersible FOWT platform with six mooring lines implemented in the preceding study is applied in analysis. Results indicate significant variations in resulting fatigue life with considered wind parameters. Thus, it is critical to apply proper wind spectra characteristics for analysis and design of FOWTs to avoid unnecessary conservatism and costs. Based on the findings of this study, more explicit guidance on the application of turbulence intensities for IEC-recommended models in offshore sites could lead to more accurate load estimates in design of FOWTs.

Quasi-brittle and Brittle Fracture Simulation Using Phase-field Method based on Cell-based Smoothed Finite Element Method (셀기반 평활화 유한요소법에 기반한 위상분야법을 이용한 준취성 및 취성 파괴 시뮬레이션)

  • Changkye Lee;Sundararajan Natarajan;Jurng-Jae Yee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.295-305
    • /
    • 2023
  • This study introduces a smoothed finite-element implementation into the phase-field framework. In recent years, the phase-field method has recieved considerable attention in crack initiation and propagation since the method needs no further treatment to express the crack growth path. In the phase-field method, high strain-energy accuracy is needed to capture the complex crack growth path; thus, it is obtained in the framework of the smoothed finite-element method. The salient feature of the smoothed finite-element method is that the finite element cells are divided into sub-cells and each sub-cell is rebuilt as a smoothing domain where smoothed strain energy is calculated. An adaptive quadtree refinement is also employed in the present framework to avoid the computational burden. Numerical experiments are performed to investigate the performance of the proposed approach, compared with that of the finite-element method and the reference solutions.

Link Quality Enhancement with Beamforming Using Kalman-based Motion Tracking for Maritime Communication

  • Kyeongjea Lee;Joo-Hyun Jo;Sungyoon Cho;Kiwon Kwon;Dong Ku Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1659-1674
    • /
    • 2024
  • Conventional maritime communication struggles to provide high data rate services for Internet of Things (IoT) devices due to the variability of maritime environments, making it challenging to ensure consistent connectivity for onboard sensors and devices. To resolve this, we perform mathematical modeling of the maritime channel and compare it with real measurement data. Through the modeled channel, we verify the received beam gain at buoys on the ocean surface. Additionally, leveraging the modeled wave motions, we estimate future angles of the buoy to use the Extended Kalman Filter (EKF) for design beamforming strategies that adapt to the evolving maritime environment over time. We further validate the effectiveness of these strategies by assessing the results from an outage probability perspective. focuses on improving maritime communication by developing a dynamic model of the maritime channel and implementing a Kalman filter-based buoy motion tracking system. This system is designed to enable precise beamforming, a technique used to direct communication signals more accurately. By improving beamforming, the aim is to enhance the quality of communication links, even in challenging maritime conditions like rough seas and varying sea states. In our simulations that consider realistic wave motions, you've observed significant improvements in link quality due to the enhanced beamforming technique. These improvements are particularly notable in environments with high sea states, where communication challenges are typically more pronounced. The progress made in this area is not just a technical achievement; it has broad implications for the future of maritime communication technologies. This paper promises to revolutionize the way we approach communication in maritime environments, paving the way for more reliable and efficient information exchange on the seas.

A Review of Seismic Full Waveform Inversion Based on Deep Learning (딥러닝 기반 탄성파 전파형 역산 연구 개관)

  • Sukjoon, Pyun;Yunhui, Park
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.227-241
    • /
    • 2022
  • Full waveform inversion (FWI) in the field of seismic data processing is an inversion technique that is used to estimate the velocity model of the subsurface for oil and gas exploration. Recently, deep learning (DL) technology has been increasingly used for seismic data processing, and its combination with FWI has attracted remarkable research efforts. For example, DL-based data processing techniques have been utilized for preprocessing input data for FWI, enabling the direct implementation of FWI through DL technology. DL-based FWI can be divided into the following methods: pure data-based, physics-based neural network, encoder-decoder, reparameterized FWI, and physics-informed neural network. In this review, we describe the theory and characteristics of the methods by systematizing them in the order of advancements. In the early days of DL-based FWI, the DL model predicted the velocity model by preparing a large training data set to adopt faithfully the basic principles of data science and apply a pure data-based prediction model. The current research trend is to supplement the shortcomings of the pure data-based approach using the loss function consisting of seismic data or physical information from the wave equation itself in deep neural networks. Based on these developments, DL-based FWI has evolved to not require a large amount of learning data, alleviating the cycle-skipping problem, which is an intrinsic limitation of FWI, and reducing computation times dramatically. The value of DL-based FWI is expected to increase continually in the processing of seismic data.

Converting Ieodo Ocean Research Station Wind Speed Observations to Reference Height Data for Real-Time Operational Use (이어도 해양과학기지 풍속 자료의 실시간 운용을 위한 기준 고도 변환 과정)

  • BYUN, DO-SEONG;KIM, HYOWON;LEE, JOOYOUNG;LEE, EUNIL;PARK, KYUNG-AE;WOO, HYE-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.4
    • /
    • pp.153-178
    • /
    • 2018
  • Most operational uses of wind speed data require measurements at, or estimates generated for, the reference height of 10 m above mean sea level (AMSL). On the Ieodo Ocean Research Station (IORS), wind speed is measured by instruments installed on the lighthouse tower of the roof deck at 42.3 m AMSL. This preliminary study indicates how these data can best be converted into synthetic 10 m wind speed data for operational uses via the Korea Hydrographic and Oceanographic Agency (KHOA) website. We tested three well-known conventional empirical neutral wind profile formulas (a power law (PL); a drag coefficient based logarithmic law (DCLL); and a roughness height based logarithmic law (RHLL)), and compared their results to those generated using a well-known, highly tested and validated logarithmic model (LMS) with a stability function (${\psi}_{\nu}$), to assess the potential use of each method for accurately synthesizing reference level wind speeds. From these experiments, we conclude that the reliable LMS technique and the RHLL technique are both useful for generating reference wind speed data from IORS observations, since these methods produced very similar results: comparisons between the RHLL and the LMS results showed relatively small bias values ($-0.001m\;s^{-1}$) and Root Mean Square Deviations (RMSD, $0.122m\;s^{-1}$). We also compared the synthetic wind speed data generated using each of the four neutral wind profile formulas under examination with Advanced SCATterometer (ASCAT) data. Comparisons revealed that the 'LMS without ${\psi}_{\nu}^{\prime}$ produced the best results, with only $0.191m\;s^{-1}$ of bias and $1.111m\;s^{-1}$ of RMSD. As well as comparing these four different approaches, we also explored potential refinements that could be applied within or through each approach. Firstly, we tested the effect of tidal variations in sea level height on wind speed calculations, through comparison of results generated with and without the adjustment of sea level heights for tidal effects. Tidal adjustment of the sea levels used in reference wind speed calculations resulted in remarkably small bias (<$0.0001m\;s^{-1}$) and RMSD (<$0.012m\;s^{-1}$) values when compared to calculations performed without adjustment, indicating that this tidal effect can be ignored for the purposes of IORS reference wind speed estimates. We also estimated surface roughness heights ($z_0$) based on RHLL and LMS calculations in order to explore the best parameterization of this factor, with results leading to our recommendation of a new $z_0$ parameterization derived from observed wind speed data. Lastly, we suggest the necessity of including a suitable, experimentally derived, surface drag coefficient and $z_0$ formulas within conventional wind profile formulas for situations characterized by strong wind (${\geq}33m\;s^{-1}$) conditions, since without this inclusion the wind adjustment approaches used in this study are only optimal for wind speeds ${\leq}25m\;s^{-1}$.

Coupling Detection in Sea Ice of Bering Sea and Chukchi Sea: Information Entropy Approach (베링해 해빙 상태와 척치해 해빙 변화 간의 연관성 분석: 정보 엔트로피 접근)

  • Oh, Mingi;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1229-1238
    • /
    • 2018
  • We examined if a state of sea-ice in Bering Sea acts as a prelude of variation in that of Chukchi Sea by using satellites-based Arctic sea-ice concentration time series. Datasets consist of monthly values of sea-ice concentration during 36 years (1982-2017). Time series analysis armed with Transfer entropy is performed to describe how sea-ice data in Chukchi Sea is affected by that in Bering Sea, and to explain the relationship. The transfer entropy is a measure which identifies a nonlinear coupling between two random variables or signals and estimates causality using modification of time delay. We verified this measure checked a nonlinear coupling for simulated signals. With sea-ice concentration datasets, we found that sea-ice in Bering Sea is influenced by that in Chukchi Sea 3, 5, 6 months ago through the transfer entropy measure suitable for nonlinear system. Particularly, when a sea-ice concentration of Bering Sea has a local minimum, sea ice concentration around Chukchi Sea tends to decline 5 months later with about 70% chance. This finding is considered to be a process that inflow of Pacific water through Bering strait reduces sea-ice in Chukchi Sea after lowering the concentration of sea-ice in Bering Sea. This approach based on information theory will continue to investigate a timing and time scale of interesting patterns, and thus, a coupling inherent in sea-ice concentration of two remote areas will be verified by studying ocean-atmosphere patterns or events in the period.

Object Extraction Technique using Extension Search Algorithm based on Bidirectional Stereo Matching (양방향 스테레오 정합 기반 확장탐색 알고리즘을 이용한 물체추출 기법)

  • Choi, Young-Seok;Kim, Seung-Geun;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, to extract object regions in stereo image, we propose an enhanced algorithm that extracts objects combining both of brightness information and disparity information. The approach that extracts objects using both has been studied by Ping and Chaohui. In their algorithm, the segmentation for an input image is carried out using the brightness, and integration of segmented regions in consideration of disparity information within the previously segmented regions. In the regions where the brightness values between object regions and background regions are similar, however, the segmented regions probably include both of object regions and background regions. It may cause incorrect object extraction in the merging process executed in the unit of the segmented region. To solve this problem, in proposed method, we adopt the merging process which is performed in pixel unit. In addition, we perform the bi-directional stereo matching process to enhance reliability of the disparity information and supplement the disparity information resulted from a single directional matching process. Further searching for disparity is decided by edge information of the input image. The proposed method gives good performance in the object extraction since we find the disparity information that is not extracted in the traditional methods. Finally, we evaluate our method by experiments for the pictures acquired from a real stereoscopic camera.

Variation of probability of sonar detection by internal waves in the South Western Sea of Jeju Island (제주 서남부해역에서 내부파에 의한 소나 탐지확률 변화)

  • An, Sangkyum;Park, Jungyong;Choo, Youngmin;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • Based on the measured data in the south western sea of Jeju Island during the SAVEX15(Shallow Water Acoustic Variability EXperiment 2015), the effect of internal waves on the PPD (Predictive Probability of Detection) of a sonar system was analyzed. The southern west sea of Jeju Island has complex flows due to internal waves and USC (Underwater Sound Channel). In this paper, sonar performance is predicted by probabilistic approach. The LFM (Linear Frequency Modulation) and MLS (Maximum Length Sequence) signals of 11 kHz - 31 kHz band of SAVEX15 data were processed to calculate the TL (Transmission Loss) and NL (Noise Level) at a distance of approximately 2.8 km from the source and the receiver. The PDF (Probability Density Function) of TL and NL is convoluted to obtain the PDF of the SE (Signal Excess) and the PPD according to the depth of the source and receiver is calculated. Analysis of the changes in the PPD over time when there are internal waves such as soliton packet and internal tide has confirmed that the PPD value is affected by different aspects.

Impact Assessment of Sea_Level Rise based on Coastal Vulnerability Index (연안 취약성 지수를 활용한 해수면 상승 영향평가 방안 연구)

  • Lee, Haemi;Kang, Tae soon;Cho, Kwangwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.304-314
    • /
    • 2015
  • We have reviewed the current status of coastal vulnerability index(CVI) to be guided into an appropriate CVI development for Korean coast and applied a methodology into the east coast of Korea to quantify coastal vulnerability by future sea_level rise. The CVIs reviewed includes USGS CVI, sea_level rise CVI, compound CVI, and multi scale CVI. The USGS CVI, expressed into the external forcing of sea_level rise, wave and tide, and adaptive capacity of morphology, erosion and slope, is adopted here for CVI quantification. The range of CVI is 1.826~22.361 with a mean of 7.085 for present condition and increases into 2.887~30.619 with a mean of 12.361 for the year of 2100(1 m sea_level rise). The index "VERY HIGH" is currently 8.57% of the coast and occupies 35.56% in 2100. The pattern of CVI change by sea_level rise is different to different local areas, and Gangneung, Yangyang and Goseong show the highest increase. The land use pattern in the "VERY HIGH" index is dominated by both human system of housing complex, road, cropland, etc, and natural system of sand, wetland, forestry, etc., which suggests existing land utilization should be reframed in the era of climate change. Though CVI approach is highly efficient to deal with a large set of climate scenarios entailed in climate impact assessment due to uncertainties, we also propose three_level assessment for the application of CVI methodology in the site specific adaptation such as first screening assessment by CVI, second scoping assessment by impact model, and final risk quantification with the result of impact model.

Isogeometric Shape Design Optimization of Power Flow Problems at High Frequencies (고주파수 파워흐름 문제의 아이소-지오메트릭 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • Using an isogeometric approach, a continuum-based shape design optimization method is developed for steady state power flow problems at high frequencies. In case the isogeometric method is employed to the shape design optimization, the NURBS basis functions used in CAD geometric modeling are directly utilized to embed the exact geometry into the computational framework so that the design parameterization for shape optimization is much easier than that in the finite element method and consequently provides the enhanced smoothness of design perturbations. Thus, exact geometric models can be used in both the response and the shape sensitivity analyses, where normal vector and curvature are continuous over the whole design space so that enhanced shape sensitivity can be expected. Through numerical examples, the developed isogeometric sensitivity is compared with finite difference one to provide excellent agreement. Also, it turns out that the proposed method works very well in the shape optimization problems.