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1. Introduction

The fracture mechanism is one of the critical matters in 

modern engineering applications. In particular, the prediction of 

initiation and propagation of the crack path is a dominant 

concern for engineers and scientists. Therefore, to treat such 

obstacles, various numerical attempts, viz. discontinuous and 

continuous methods, have been suggested (Zhuang et al., 2022). 

Well-known discontinuous approaches are the extended finite 

element method (X-FEM) (Moës and Belytschko, 2002; Yoo 

and Kim, 2016) and generalized finite element method (GFEM) 

(Fries and Belytschko, 2010). Typically, these approaches utilize 

further schemes to handle crack tip singularity. Although this 

leads to improved accuracy, the numerical implementation often 

suffers from its mathematical complexity. In recent years, one of 

the continuous approaches, i.e., phase-field method (Miehe et 

al., 2010a; 2010b), has caught researchers’ interest. The phase- 

field possesses notable characteristics, including modeling the 

crack as a geometric discontinuity while treating the cracked 

domain as a continuum. Thus, additional treatment for crack 

initiation is not required. In addition, it has been instrumental in 

commercial/academic software (Hirshikesh et al., 2018; Molnár 

and Gravouil, 2017). Notwithstanding its ease of implementation, 

the phase-field method encounters a computational burden as the 

discontinuity evolves over time (Hirshikesh et al., 2018). Accordingly, 

quadtree mesh refinement can be a practical candidate to save 
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This study introduces a smoothed finite-element implementation into the phase-field framework. In recent years, the phase-field method has 
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mesh generation labor (Finkel and Bentley, 1974).

In this study, we explore the possibility of incorporating 

quadtree decomposition and strain smoothing approximations to 

embrace computational efficiency and accuracy. Since strain 

smoothing approximation, often called Smoothed Finite Element 

Method (S-FEM), was introduced by Liu et al. (2007a), the 

method has shown its tolerance to locking and mesh distortion 

(Zeng and Liu, 2018). Besides such aspects, S-FEM, in general, 

shows fast convergence and yields high accuracy in engineering 

problems (Lee et al., 2022; Liu et al., 2007b) and discontinuity 

(Bordas et al., 2010; Surendran et al., 2017). In the phase-field 

framework, highly accurate strain energy density needs to be 

computed to capture the complex crack growth path. In the 

S-FEM framework, finite element cells are sub-divided into 

sub-cells, and then sub-cells are reconstructed as a smoothing 

domain where gradients are smoothed. The strain energy is also 

computed on each smoothing domain by the smoothed strains 

and generally shows an improvement in accuracy (Liu and 

Nguyen, 2010). Therefore, S-FEM is workably able to bring a 

reliable crack path in the phase-field method.

The rest of this paper is organized as follows: Section 2 

revisits the background of the phase-field method and the 

overview of S-FEM discussed in the following section. The 

validation and reliability of the adaptive S-FEM implementation 

into the phase-field are studied in Section 4 and then major 

discussion is drawn in the last section.

2. Theoretical Background of Phase-field Method

The basic idea of the phase-field fracture theory is based on 

the energy theory introduced by Griffith (1921). However, it has 

a limitation to explain crack growth behavior since the crack 

initiation and bifurcation are not considered. Hence, Francfort 

and Marigo (1998) proposed the variational fracture theory 

using energy-minimizing approximation. The internal energy of 

the system is given as:


Ω

 


 (1)

where  is the critical energy release rate and  is strain energy 

density under the undamaged condition is given by Eq. (2):

 



     (2)

         



  

where Lame’s first parameter  and the shear modulus  are 

computed respectively in terms of Young’s modulus  and 

Poisson’s ratio  as follows:  



 and  




. To numerically solve Eq. (1), a diffused field variable 

 was introduced by Bourdin et al. (2000) to characterize the 

crack surface as shown in Fig. 1.

In the phase-field method, the diffused field variable represents 

the state of the material, i.e.,    represents an undamaged 

state and    represents a fully damaged state. The approxi-

mation of the fracture energy by the crack can be defined as:




≈



 (3)

               




 




∇

By substituting Eq. (3) into Eq. (1), we can obtain the energy 

of the system using Eq. (4):

 

  


 




∇ (4)

where  denotes the degradation of the stored energy 

with evolving damage. Note that, in the framework of the phase- 

field method, the size of the regularized crack surface is 

controlled by the internal length scale .

By employing Gauss divergence theorem to Eq. (3), the 

following coupled field equations can be obtained:

Fig. 1  Solid body with crack topology
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∇･   in  (5a)



  ∆    in  (5b)

where  in Eq. (5a) is  the Cauchy stress tensor and the natural 

boundary conditions are defined in Eqs. (6a) and (6b) as follows, 

respectively:

･    on  (6a)

∇･   on  (6b)

In this study, the smoothed finite element approximation is 

utilized to solve coupled field equations of Eq. (3). To reduce 

irreversibility, Ambati et al. (2014) proposed a hybrid formulation, 

as implemented in Eq. (5b), which can be rewritten as Eq. (7):



  ∆     (7)

where a historical variable 


, as defined in Eq. (8), was intro-

duced by Miehe et al. (2010a):


 

max
∈ 

 (8)

where  



〈〉

      with 〈･〉 




  and  is the bulk modulus (Amor et al., 2009).

Applying the standard Bubnov-Galerkin approximation, we 

can obtain the following weak form of Eq. (10): Find ∈ and 

∈ such that, for all ∈  and ∈,

   (9a)

   (9b)

where

 


    (10a)

  


･  




･ (10b)

 

∇･∇  


  (10c)

 


 


∇･ (10d)

where  is a very small value for numerical consistency. To 

solve Eq. (10), a staggered approach is used, i.e., firstly, the 

phase field  is solved by the displacement fields. Then the 

phase field is used to solve for the displacement fields.

3. Smoothed Finite Element Method: Overview

In this section, the basic idea behind the gradient smoothing 

approach within the framework of the FEM is briefly revisited. 

Liu et al. (2007a) introduced the gradient smoothing approach in 

the framework of the FEM, often called S-FEM, to improve 

linear triangular and bilinear quadrilateral elements. One of the 

remarkable aspects of S-FEM is the sub-division of finite 

elements, so-called sub-cells. Then, sub-cells are reconstructed 

to smoothing domains by different schemes where gradients are 

smoothed over the smoothing domains. Thus, strains are continuous 

over the smoothing domains but are discontinuous across the 

boundaries of smoothing domains, not elements (Liu and 

Nguyen, 2016). In the framework of S-FEM, not only triangular 

or quadrilateral cells but also arbitrary polygons can be used 

(Dai et al., 2007). This feature leads to quadtree meshes that can 

be employed in S-FEM without any further numerical treatments. 

Fig. 1 illustrates the cell-based S-FEM (CS-FEM) scheme that 

how to construct the smoothing domains for quadtree meshes. In 

general, for CS-FEM, the shape of a sub-cell follows the shape 

of the parent cell, such as a quadrilateral element cell is divided 

into four quadrilateral sub-cells and triangular element cell has 

three triangular sub-cells. However, since this work utilizes 

quadtree meshes, the 4-node quadrilateral element is divided 

into four triangular sub-cells as shown in Fig. 2(a). In quadtree 

mesh refinement, 5-node to 8-node polygons are possibly 

generated; therefore, the number of triangular sub-cells depends 

on the number of vertices of the parent element cell. For 

example, as shown in Fig. 2(b), a 5-node polygonal element cell 

is divided into 5 triangular sub-cells. As shown in Fig. 2, in the 

cell-based smoothed approximation, each sub-cell plays a role as 

the smoothing domain, where gradients are smoothed.

In S-FEM approximation, the following infinitesimal strain 




 over the smoothing domain  is considered:



 



 , ∀∈ (11)
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where a point  is located on the boundaries of the smoothing 

domain and the weight function , along with its property, is 

given in Eqs. (12a) and (12b), respectively:




  ,   (12a)

   ∈

 ∉
(12b)

Therefore, Eq. (11) can be rewritten by means of the divergence 

theorem as follows:

 


 


 (13)

           


 


 

where  is the area of the smoothing domain and   is the 

outward normal vector given at Gauss points located on the 

middle point of boundaries of the smoothing domain as shown in 

Fig. 2. In terms of the nodal displacements, Eq. (13) is rewritten 

as Eq. (14) as follows:

  ∑
∈







 (14)

where  is a set of nodes. The smoothed strain-displacement 

matrix for 2D is given in the following Eq. (15):


 



























 (15)

where


 


 




  (16)

where 

 is the shape functions and  is the boundaries of the 

smoothing domain. As shown in Fig. 2 and Eq. (16), the 

proposed S-FEM does not require an explicit form of shape 

functions. In other words, there is no isoparametric mapping. In 

addition, the interior Gauss integration is altered to line 

integration with one Gauss point at the middle of boundaries of 

the smoothing domain (please refer to Fig. 2). These salient 

features of S-FEM bring marked benefits that it can avoid 

over-estimation of the stiffness and is immune to highly 

distorted meshes.

Eq. (17) presents the discrete system equation for S-FEM:

   (17)

 




    ∑

 




 

     ∑





 

where  is the number of target cells. The external force vector 

 is obtained in the same manner in finite element approximation.

3.1 Quadtree refinement

The quadtree mesh refinement is involved in this work for 

spatial discretization. As shown in Fig. 3, a quadrilateral mesh is 

sub-dividing into four cells with equal dimensions recursively. 

In general, this process lies in certain conditions, for instance, 

the solutions are concentrated or the geometric discontinuity 

exists. In this work, quadtree decomposition is facilitated along 

the crack surface. For interested readers, the details of the use of 

quadtree refinement can be referred to Natarajan et al. (2013) 

and references therein.

(a) 4-node quadrilateral

(b) Polygon

Fig. 2  The cell-based smoothing scheme: (a) smoothing domain in 

quadrilateral cell and (b) smoothing domain in polygonal cell
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3.2 Wachspress basis functions 

For -sided polygons, Wachspress (1971) introduced the 

rational basis functions to obtain nodal interpolation and 

linearity on the boundaries. Later, Warren et al. (2007) proposed 

the generalized Wachspress basis functions for simplex polygons 

and Meyer et al. (2002) suggested a simple form of a barycentric 

Wachspress basis function. We use the following simple form of 

Wachspress basis functions given in Eq. (18) in the smoothed 

FEM framework:

 
∑


(18)

where wj(x) is defined in the following Eq. (19):

 



(19)

           
sinsin∥∥



sin  



∥∥


cot  cot

where the signed area of triangle   is   and 

adjacent angles are  and  as given in Fig. 4.

4. Numerical Tests

In this section, numerical results concerning the proposed 

adaptive quadtree S-FEM implementation into the framework of 

the phase-field method are investigated. The first example 

validates CS-FEM with a 4-node quadrilateral (Q4) element 

comparing FEM and CS-FEM with a 3-node triangular (T3) 

element. Then, a patch test for the implementation of the phase- 

field method is investigated in Section 4.2. In the following 

section, fracture problems are considered to evaluate the current 

approaches under different characteristics of cracks. Note that 

plane strain condition is considered for all tests.

Fig. 5 illustrates a schematic flowchart of the pseudo-code of 

the proposed framework. In the pre-processing stage, an initial 

finite element mesh is discretized and the phase-field is computed 

to generate quadtree meshes. Next, the staggered iteration is 

employed in the main stage to compute displacements, history 

variables and the phase-field. Then, quadtree meshes are adaptively 

generated checking the threshold of the phase-field. The staggered 

iteration is repeated with increased load steps using refined 

quadtree meshes. For conducting the subsequent numerical tests, 

the proposed framework has been implemented in MATLAB 

2019b, which runs on an AMD Ryzen 5 5600G processor 

clocked at 3.90GHz and is equipped with 32GB of RAM.

4.1 Cantilever beam

This section tests a cantilever beam as the validation for the 

proposed smoothed FEM. Fig. 6 depicts the geometry of the 

beam and boundary conditions. The length and height of the 

beam are ∈m and ∈m, respectively. The 

boundary conditions are imposed on the left end of the beam and 

the load   1N carries on the right side of the beam. Young’s 

(a) Initial (b) Level 1 (c) Level 2

Fig. 3  Quadtree decomposition in quadrilateral elements

Fig. 4  Barycentric coordinates for an -sided element

Fig. 5  Main steps involved in the implementation of the propose 

framework
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modulus and Poisson’s ratio are   1000N/mm2 and  0.3. 

The exact displacements and stresses can be found in Augarde 

and Deeks (2008):

 



      



 
 

 
  


 


       

 



  


 


  



 
 






For this test, the following 9 levels of refined Q4 elements are 

used: 306, 650, 1,122, 1,722, 2,450, 3,306, 4,290, 5,402 and 

6,642DOFs. Fig. 7 shows the convergence of the relative errors 

in displacements for FEM with Q4 and T3 elements and CS-FEM 

Q4 and T3 elements. As expected, Q4-CS-FEM yields more 

accurate results than Q4- and T3-FEMs, while T3-CS-FEM 

provides almost identical accuracy to T3-FEM.

4.2 Patch test 

Next, a simple test of S-FEM implementation into the phase- 

field method with the analytical solution is examined. A unit 

square plate, viz.   1mm, under un-axial tension is used as 

shown in Fig. 8. The following material and the phase-field 

properties are chosen: Young’s modulus   210kN/mm2, 

Poisson’s ratio   0.3, critical energy release rate   5 × 10-3 

kN/mm and the internal length scale   0.1mm. The dis-

placement   0.1mm is applied on the top edge of the plate 

with ∆  1 × 10-3mm increment. The analytical solutions, 

given by  Molnár and Gravouil (2017), for this test can be found 

in Eq. (20):

 



 (20a)

 







 (20b)

 



























(20c)

   (20d)

where  is the axial strain and  is the axial stress under the 

damaged condition.

Fig. 9 illustrates the evolution of the phase-field parameter 

and the axial stress as a function of the axial strain. As shown in 

Fig. 9(a), the evolution of the phase-field parameter is zero 

(undamaged) to one (fully damaged). As the phase-field parameter 

evolves, there is a noticeable decline in the load-bearing 

capacity of the material stiffness as shown in Fig. 9(b). These 

results show that the current approach meets an excellent 

agreement with the analytical solutions.

Fig. 6  Geometry and boundary conditions of a cantilever beam

Fig. 7  Cantilever beam: convergence of the relative errors in 

displacements for FEM and S-FEM

Fig. 8  Geometry and boundary conditions of patch test: uni-axial 

tension
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4.3 Plate with the crack 

Next, we consider the two-dimensional domains with straight 

single and double cracks undergoing tension and shear. For the 

following test, a unit square plate with Lame’s first parameter 

  121.15kN/mm2 and the shear modulus   80.77kN/mm2, 

equivalent to   2.1 × 105kN/mm2 and   0.3, is evaluated. 

The critical energy release rate   2.7 × 10kN/mm and the 

internal length scale   0.011mm are also considered.

4.3.1 Single crack with tension

First, the plate with a straight crack with tension is investigated. 

The crack is located at ∈{0,0.5}mm and   0.5mm as 

shown in Fig. 10(a). Displacement   is imposed on the top edge 

of the plate with ∆  1.99 × 10-4mm up to   4.78 × 10-3mm 

and then ∆  1.5 × 10-6mm up to   6 × 10-3mm which to 

reach the failure. 

In the beginning, the plate is discretized into 2 × 2 elements 

and then quadtree meshes are refined along the crack surface as 

shown in Figs. 10(b) and 10(c). Then meshes are adaptively 

refined along the path of the crack growth up to the failure of the 

specimen. Fig. 11 illustrates quadtree meshes and the phase-field 

parameters of FEM and CS-FEM. The force-displacement curve 

of CS-FEM is given in Fig. 12 comparing FEM and the reference 

solution (Miehe et al., 2010b). It can be observed that the 

proposed approach shows relatively comparable failure patterns 

(a) Axial strain vs the phase field parameter

(b) Axial strain vs axial stress

Fig. 9  Patch tests: comparison of the phase-field parameter as a 

function of the axial strain and the axial stress as a function of the 

axial strain

(a) Geometry and boundary conditions

(b) Initial mesh (c) Initial quadtree mesh

Fig. 10  Plate with a single crack with tension: (a) geometry and 

boundary conditions, (b) initial finite element mesh and (c) refined 

initial quadtree mesh (11,416DOFs)

(a) FEM (27,438DOFs) (b) FEM 

(c) CS-FEM (27,480DOFs) (d) CS-FEM 

Fig. 11  Plate with a single crack with tension: adaptively refined 

quadtree meshes and the phase-field parameter (  0.6 × 10-3mm)
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like FEM.

Table 1 presents the simulation time for the single crack with 

the tension problem. Unlike edge-based and node-based S-FEM, 

where the bandwidth of their stiffness matrix is wider than FEM, 

the bandwidth of the proposed CS-FEM is the same as that of 

FEM. Hence, in general problems, the computational times of 

CS-FEM and the standard FEM are similar. However, in the 

context of adaptive quadtree mesh refinement, FEM elements 

with hanging nodes require more integration points compared to 

the proposed CS-FEM, where the integration points remain 

constant. This numerical aspect, as given in Table 1, results in 

the proposed CS-FEM requiring relatively more degrees of 

freedom but remarkably shorter simulation time than FEM in the 

present study.

4.3.2 Single crack with shear

The next test is the plate with a straight crack with shear. The 

geometry and boundary conditions of the problem are given in 

Fig. 13(a). The crack is in the same position as the previous test 

in Section 4.3.1. Displacement is increased with ∆  8.8 × 

10-4mm up to   8 × 10-3mm and then ∆  2.45 × 10-4mm is 

applied until when   2 × 10-2mm.

Figs. 14(a) and 14(c) show the adaptive quadtree decom-

position and the crack propagation path can be found in Figs. 

14(b) and 14(d). Fig. 15 depicts the curve of the relationship 

between displacement and load. Compared to FEM, the present 

approach yields good agreement with the reference solution 

(Miehe et al., 2010b).

Results, numbers of nodes and elements of quadtree meshes 

and simulation time, of the single crack with the shear problem 

are given in Table 2. In contrast to the single crack with the 

Fig. 12  Plate with a single crack with tension: load-displacement 

curve

Table 1  Comparison of the numerical result of single crack with 

tension: FEM and CS-FEM

FEM CS-FEM

Num. of load steps 838 838

Num. of nodes 13,719 13,740

Num. of elements 12,892 12,913

Computational time 54.82 (mins.) 38.82 (mins.)

(a) Geometry and boundary conditions

(b) Initial mesh (c) Initial quadtree mesh

Fig. 13  Plate with a single crack with tension: (a) geometry and 

boundary conditions, (b) initial finite element mesh and (c) refined 

initial quadtree mesh (11,416DOFs)

(a) FEM (30,992DOFs) (b) FEM 

(c) CS-FEM (30,752DOFs) (d) CS-FEM 

Fig. 14  Plate with a single crack with shear: adaptively refined 

quadtree meshes and the phase-field parameter (  2 × 10-2mm)
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tension problem, CS-FEM has the need for comparatively fewer 

nodes and elements. Additionally, the computational cost of the 

proposed approach is reasonably cheaper than FEM.

4.3.3 Double cracks with tension

The numerical experiment ends with asymmetric cracks at 

both ends of the plate with tension in this section. The geometry 

and boundary conditions are given in Fig. 16(a) with the initial 

crack length   0.4mm and   0.1mm. The domain is 

discretized into 10 × 10 elements at first and quadtree meshes are 

generated with 9,230DOFs along both crack surfaces (see Figs. 

16(b) and 16(c)). 

The tension is applied with: ∆  4.78 × 10-3mm for 25steps, 

then it reduced to ∆  1.5 × 10-6mm for the rest simulation, 

which to reach   7.5 × 10-3mm.

Fig. 17 shows refined quadtree meshes and the crack propa-

gation path for the test. For FEM, quadtree refinement generates 

13,900DOFs along the crack path while 13,874DOFs are de-

composed in CS-FEM. The proposed CS-FEM provides the 

expected crack propagation path when double cracks are involved.

Fig. 18 illustrates the reaction force as a function of the 

applied displacements, showing energy degradation.

Lastly, the comparison of computational time with respect to 

the adaptive quadtree elements and nodes for the proposed 

approach and FEM is given in Table 3. The proposed CS-FEM 

requires relatively fewer DOFs than FEM, but its simulation 

time is approximately half that of FEM. Consequently, the present 

method needs marginally fewer or more DOFs; however, it 

yields cheaper computational costs retaining the comparable 

accuracy to FEM.

Fig. 15  Plate with a single crack with shear: load-displacement 

curve

Table 2  Comparison of the numerical result of single crack with 

shear: FEM and CS-FEM

FEM CS-FEM

Num. of load steps 59 59

Num. of nodes 15,496 15,473

Num. of elements 14,563 14,536

Computational time 14.03 (mins.) 11.05 (mins.)

(a) Geometry and boundary conditions

(b) Initial mesh (c) Initial quadtree mesh

Fig. 16  Plate with double cracks with tension: (a) geometry and 

boundary conditions, (b) initial finite element mesh and (c) refined 

initial quadtree mesh (11,416DOFs)

(a) FEM (13,900DOFs) (b) FEM 

(c) CS-FEM (13,874DOFs) (d) CS-FEM 

Fig. 17  Plate with double cracks with tension: adaptively refined 

quadtree meshes and the phase-field parameter (  7.5 × 10-3mm)
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5. Conclusion

In this work, a staggered phase-field method is implemented 

into the framework of smoothed finite element method. To avoid 

the finer mesh generation burden and to achieve computational 

efficiency, an adaptive quadtree mesh decomposition scheme is 

incorporated into S-FEM. 

In the method, the elastic displacements and the phase-field 

parameters are decoupled and solved separately. To link both 

processes, the historical variables of the potential energy are 

employed. 

The crack propagation is represented by the phase-field para-

meters as zero (no damage) and one for completely damaged.

The proposed S-FEM implementation is validated with the 

result available in the literature. The results show that the 

adaptive S-FEM of the phase-field method produces a good 

agreement with the reference solution, requiring fewer DOFs 

less computational effort than regular meshes at a similar level 

of accuracy.
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요  지

본 연구에서는 평활화 유한요소법(Smoothed finite element method)을 도입한 위상분야법(Phase-field method)에 대해 소개하고자 

한다. 위상분야법은 최근 균열 개시 및 전파 해석에 많이 사용되는 기법으로 균열 표면을 추적하기 위한 추가적인 처리기법이 필요하

지 않는 특징이 있다. 위상분야법에서 복잡한 균열 전파를 포착하기 위해 높은 정확도의 변형률 에너지를 평활화 유한요소법을 도입

하여 계산하였다. 평활화 유한요소법은 유한요소를 하위 셀로 나누고 각각의 하위 셀을 평활화 영역으로 재조립하여 변형률 에너지

를 계산하게 된다. 또한 해석 시간 단축을 위하여 쿼드트리 요소망을 제안한 기법에 사용하였다. 수치 예제를 통하여 제안한 기법을 참

조해 및 유한요소법과 비교하여 검증하였다.

핵심용어 : 위상분야법, 평활화 유한요소법, 쿼드트리 요소망, 균열 전파




