Browse > Article
http://dx.doi.org/10.7582/GGE.2022.25.4.227

A Review of Seismic Full Waveform Inversion Based on Deep Learning  

Sukjoon, Pyun (Department of Energy Resources Engineering, Inha University)
Yunhui, Park (Korea Institute of Ocean Science and Technology)
Publication Information
Geophysics and Geophysical Exploration / v.25, no.4, 2022 , pp. 227-241 More about this Journal
Abstract
Full waveform inversion (FWI) in the field of seismic data processing is an inversion technique that is used to estimate the velocity model of the subsurface for oil and gas exploration. Recently, deep learning (DL) technology has been increasingly used for seismic data processing, and its combination with FWI has attracted remarkable research efforts. For example, DL-based data processing techniques have been utilized for preprocessing input data for FWI, enabling the direct implementation of FWI through DL technology. DL-based FWI can be divided into the following methods: pure data-based, physics-based neural network, encoder-decoder, reparameterized FWI, and physics-informed neural network. In this review, we describe the theory and characteristics of the methods by systematizing them in the order of advancements. In the early days of DL-based FWI, the DL model predicted the velocity model by preparing a large training data set to adopt faithfully the basic principles of data science and apply a pure data-based prediction model. The current research trend is to supplement the shortcomings of the pure data-based approach using the loss function consisting of seismic data or physical information from the wave equation itself in deep neural networks. Based on these developments, DL-based FWI has evolved to not require a large amount of learning data, alleviating the cycle-skipping problem, which is an intrinsic limitation of FWI, and reducing computation times dramatically. The value of DL-based FWI is expected to increase continually in the processing of seismic data.
Keywords
full waveform inversion; deep learning; reparameterization; physics-informed neural network;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Zhu, W., Xu, K., Darve, E., Biondi, B., and Beroza, G. C., 2022, Integrating deep neural networks with full-waveform inversion: Reparameterization, regularization, and uncertainty quantification, Geophysics, 87(1), R93-R109. https://doi.org/10.1190/geo2020-0933.1   DOI
2 Adler, A., Araya-Polo, M., and Poggio, T., 2019, Deep recurrent architectures for seismic tomography, 81st Annual International Conference and Exhibition, EAGE, Extended Abstracts, 1-5. https://doi.org/10.3997/2214-4609.201901512   DOI
3 Al-Chalabi, M., 1974, An analysis of stacking, RMS, average, and interval velocities over a horizontally layered ground, Geophys. Prospect., 22(3), 458-475. https://doi.org/10.1111/j.1365-2478.1974.tb00099.x   DOI
4 Alkhalifah, T., Song, C., Waheed, U. B., and Hao, Q., 2020, Wavefield solutions from machine learned functions that approximately satisfy the wave equation, 81st Annual International Conference and Exhibition, EAGE, Extended Abstracts, 1-5. https://doi.org/10.3997/2214-4609.202010588   DOI
5 Alterman, Z., and Karal, F. C., 1968, Propagation of elastic waves in layered media by finite difference methods, Bull. Seismol. Soc. Amer., 58, 367-398. https://www.semanticscholar.org/paper/Propagation-of-elastic-waves-in-layered-media-by-Alterman-Karal/fd2895fa7c8fb6221a0e1f25a2a7c1b175c7dc96
6 Al-Yahya, K., 1989, Velocity analysis by iterative profile migration, Geophysics, 54(6), 718-729. https://doi.org/10.1190/1.1442699   DOI
7 Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T., 2018, Deep-learning tomography, The Leading Edge, 37(1), 58-66. https://doi.org/10.1190/tle37010058.1   DOI
8 Bengio, Y., Courville, A., & Vincent, P., 2013, Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8), 1798-1828. https://doi.org/10.1109/TPAMI.2013.50   DOI
9 Biswas, R., Vassiliou, A., Stromberg, R., and Sen, M. K., 2018, Stacking velocity estimation using recurrent neural network, 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2241-2245. https://doi.org/10.1190/segam2018-2997208.1   DOI
10 Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion, Geophysics, 60(5), 1457-1473. https://doi.org/10.1190/1.1443880   DOI
11 Chopra, S., and Castagna, J. P., 2014, AVO, Society of ExplorationGeophysicists. https://doi.org/10.1190/1.9781560803201.refs   DOI
12 Crase, E., Pica, A., Noble, M., McDonald, J., and Tarantola, A., 1990, Robust elastic nonlinear waveform inversion: Application to real data, Geophysics, 55(5), 527-538. https://doi.org/10.1190/1.1442864   DOI
13 Cybenko, G., 1989, Approximation by superpositions of a sigmoidal function, Math. Control Signal Syst., 2(4), 303-314. https://link.springer.com/article/10.1007/BF02551274   DOI
14 De Souza, L., Desassis, N., Chauris, H., and Hachem, E., 2022, First Steps in the Application of Physics-Informed Neural Networks to Full Waveform Inversion, 83rd EAGE Annual Conference and Exhibition Workshop Programme, 1-5. https://doi.org/10.3997/2214-4609.202211045   DOI
15 Dhara, A., and Sen, M. K., 2022, Physics-guided deep autoencoder to overcome the need for a starting model in full-waveform inversion, The Leading Edge, 41(6), 375-381. https://doi.org/10.1190/tle41060375.1   DOI
16 Engquist, B., Froese, B. D., and Yang, Y., 2016, Optimal transport for seismic full waveform inversion, Commun. Math. Sci., 14, 2309-2330. https://doi.org/10.4310/CMS.2016.v14.n8.a9   DOI
17 Esser, E., Guasch, L., van Leeuwen, T., Aravkin, A. Y., and Herrmann, F. J., 2018, Total variation regularization strategies in full-waveform inversion, SIAM J. Imaging Sci., 11, 376-406. https://doi.org/10.1137/17M111328X   DOI
18 Fabien-Ouellet, G., and Sarkar, R., 2020, Seismic velocity estimation: A deep recurrent neural-network approach, Geophysics, 85(1), U21-U29. https://doi.org/10.1190/geo2018-0786.1   DOI
19 Ghysels, P., Li, X. S., Rouet, F.-H., Williams, S., and Napov, A., 2016, An efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized sampling, SIAM J. Sci. Comput., 38(5), S358-S384. https://doi.org/10.1137/15M1010117   DOI
20 Fang, J., Zhou, H., Elita Li, Y., Zhang, Q., Wang, L., Sun, P., and Zhang, J., 2020, Data-driven low-frequency signal recovery using deep-learning predictions in full-waveform inversion, Geophysics, 85(6), A37-A43. https://doi.org/10.1190/geo2020-0159.1   DOI
21 He, Q., and Wang, Y., 2021, Reparameterized full-waveform inversion using deep neural networks, Geophysics, 86(1), V1-V13. https://doi.org/10.1190/geo2019-0382.1   DOI
22 Herrmann, F. J., Erlangga, Y., and Lin, T. T. Y., 2009, Compressive sensing applied to full-wave form inversion, 71st International Annual Conference and Exhibition, EAGE, Extended Abstracts, S016. https://slim.gatech.edu/content/compressive-sensing-applied-full-waveform-inversion
23 Hicks, G. J., 2002, Arbitrary source and receiver positioning in finite-difference schemes using Kaiser windowed sinc functions, Geophysics, 67(1), 156-165. https://doi.org/10.1190/1.1451454   DOI
24 Hornik, K., 1991, Approximation capabilities of multilayer feedforward networks, Neural Netw., 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T   DOI
25 Hornik, K., Stinchcombe, M., and White, H., 1989, Multilayer feedforward networks are universal approximators, Neural Netw., 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8   DOI
26 Huang, G., and Symes, W. W., 2015, Full waveform inversion via matched source extension, 85th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1320-1325. https://doi.org/10.1190/segam2015-5872566.1   DOI
27 Jo, J. H., and Ha, W., 2021, Case analysis of seismic velocity model building using deep neural networks, Geophys. and Geophys. Explor., 24(2), 53-66 (in Korean with English abstract). https://doi.org/10.7582/GGE.2021.24.2.53   DOI
28 Huang, G., Nammour, R., and Symes, W., 2017, Full-waveform inversion via source-receiver extension, Geophysics, 82(3), R153-R171. https://doi.org/10.1190/geo2016-0301.1   DOI
29 Huang, G., Symes, W. W., and Nammour, R., 2016, Matched source waveform inversion: Space-time extension, 86th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1426-1431. https://doi.org/10.1190/segam2016-13762051.1   DOI
30 Hustedt, B., Operto, S., and Virieux, J., 2004, Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling, Geophys. J. Int., 157(3), 1269-1296. https://doi.org/10.1111/j.1365-246X.2004.02289.x   DOI
31 Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L., 2021, Physics-informed machine learning. Nat. Rev. Phys., 3(6), 422-440. https://www.nature.com/articles/s42254-021-00314-5   DOI
32 Krizhevsky, A., Sutskever, I., and Hinton, G. E., 2017, ImageNet classification with deep convolutional neural networks, Commun. ACM, 60(6), 84-90. https://doi.org/10.1145/3065386   DOI
33 Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations, Conference on Inverse Scattering, Theory and Application, SIAM, Expanded Abstracts, 206-220. https://www.scirp.org/(S(351jmbntv-nsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=3108101
34 Lei, N., An, D., Guo, Y., Su, K., Liu, S., Luo, Z., Yau, S.-T., and Gu, X., 2020, A geometric understanding of deep learning, Engineering, 6(3), 361-374. https://doi.org/10.1016/j.eng.2019.09.010   DOI
35 Liu, B., Yang, S., Ren, Y., Xu, X., Jiang, P., and Chen, Y., 2021, Deep-learning seismic full-waveform inversion for realistic structural modelsDL seismic FWI, Geophysics, 86(1), R31-R44. https://doi.org/10.1190/geo2019-0435.1   DOI
36 Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S., 1993, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural netw., 6(6), 861-867. https://doi.org/10.1016/S0893-6080(05)80131-5   DOI
37 Lewis, W., and Vigh, D., 2017, Deep learning prior models from seismic images for full-waveform inversion, 87th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1512-1517. https://doi.org/10.1190/segam2017-17627643.1   DOI
38 Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., Wang, Y., and Jiang, P., 2020, Deep-Learning Inversion of Seismic Data, IEEE Trans. Geosci. Remote Sensing, 58(3), 2135-2149. https://doi.org/10.1109/TGRS.2019.2953473   DOI
39 Ma, Y., Ji, X., Fei, T. W., and Luo, Y., 2018, Automatic velocity picking with convolutional neural networks, 88th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2066-2070. https://doi.org/10.1190/segam2018-2987088.1   DOI
40 Metivier, L., Brossier, R., Merigot, Q., Oudet, E., and Virieux, J., 2016, Measuring the misfit between seismograms using an optimal transport distance: Application to full waveform inversion, Geophys. J. Int., 205, 345-377. https://dx.doi.org/10.1093/gji/ggw014   DOI
41 Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multi offset seismic data, Geophysics, 52(9), 1211-1228. https://doi.org/10.1190/1.1442384   DOI
42 Moseley, B., Markham, A., and Nissen-Meyer, T., 2018, Fast approximate simulation of seismic waves with deep learning, arXiv preprint arXiv:1807.06873. https://doi.org/10.48550/arXiv.1807.06873   DOI
43 Ovcharenko, O., Kazei, V., Kalita, M., Peter, D., and Alkhalifah, T., 2019, Deep learning for low-frequency extrapolation from multioffset seismic data, Geophysics, 84(6), R989-R1001. https://doi.org/10.1190/geo2018-0884.1   DOI
44 Mosser, L., Dubrule, O., and Blunt, M. J., 2020, Stochastic seismic waveform inversion using generative adversarial networks as a geological prior, Math Geosci., 52(1), 53-79. https://link.springer.com/article/10.1007/s11004-019-09832-6   DOI
45 Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K., 2016, Wavenet: A generative model for raw audio, arXiv preprint arXiv:1609.03499. https://doi.org/10.48550/arXiv.1609.03499   DOI
46 Operto, S., Virieux, J., Dessa, J. X., and Pascal, G., 2006, Crustal imaging from multifold ocean bottom seismometers data by frequency-domain fullwaveform tomography: Application to the eastern Nankai trough, J. Geophys. Res., 111, B09306. https://doi.org/10.1029/2005JB003835   DOI
47 Park, M. J., and Sacchi, M. D., 2020, Automatic velocity analysis using convolutional neural network and transfer learning, Geophysics, 85(1), V33-V43. https://doi.org/10.1190/geo2018-0870.1   DOI
48 Peters, B., and Herrmann, F. J., 2017, Constraints versus penalties for edge preserving full-waveform inversion: The Leading Edge, 36, 94-100. https://doi.org/10.1190/tle36010094.1   DOI
49 Pica, A., Diet, J., and Tarantola, A., 1990, Nonlinear inversion of seismic reflection data in a laterally invariant medium, Geophysics, 55(3), 284-292. https://doi.org/10.1190/1.1442836   DOI
50 Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophys. J. Int., 167(2), 495-503. https://doi.org/10.1111/j.1365-246X.2006.02978.x   DOI
51 Raissi, M., Perdikaris, P., and Karniadakis, G. E., 2019, Physicsinformed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707. https://doi.org/10.1016/j.jcp.2018.10.045   DOI
52 Plessix, R.-E., 2009, Three-dimensional frequency-domain fullwaveform inversion with an iterative solver, Geophysics, 74(6), WCC149-WCC157. https://doi.org/10.1190/1.3211198   DOI
53 Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model, Geophysics, 64(3), 888-901. http://seisweb.usask.ca/classes/GEOL898/2020/WWW/Pratt_Geophysics1999.pdf   DOI
54 Pratt, R. G., Shin, C., and Hick, G., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophys. J. Int., 133(2), 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x   DOI
55 Rasht-Behesht, M., Huber, C., Shukla, K., and Karniadakis, G. E., 2022, Physics?Informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions, J. Geophys. Res.-Solid Earth, 127(5), e2021JB023120. https://doi.org/10.1029/2021JB023120   DOI
56 Ren, Y., Xu, X., Yang, S., Nie, L., and Chen, Y., 2020, A physics-based neural-network way to perform seismic full waveform inversion, IEEE Access, 8, 112266-112277. https://doi.org/10.1109/ACCESS.2020.2997921   DOI
57 Richardson, A., 2018a, Seismic full-waveform inversion using deep learning tools and techniques, arXiv preprint arXiv:1801.07232. https://doi.org/10.48550/arXiv.1801.07232   DOI
58 Richardson, A., 2018b, Generative adversarial networks for model order reduction in seismic full-waveform inversion, arXiv preprint arXiv:1806.00828. https://doi.org/10.48550/arXiv.1806.00828   DOI
59 Ronneberger, O., Fischer, P., and Brox, T., 2015, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241. https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
60 Rickett, J., 2013, The variable projection method for waveform inversion with an unknown source function, Geophys. Prospect., 61(4), 874-881. https://doi.org/10.1111/1365-2478.12008   DOI
61 Roth, G., and Tarantola, A., 1994, Neural networks and inversion of seismic data, J. Geophys. Res., 99(B4), 6753-6768. https://doi.org/10.1029/93JB01563   DOI
62 Rouet, F.-H., Li, X. S., Ghysels, P., and Napov, A., 2016, A distributed-memory package for dense hierarchically semiseparable matrix computations using randomization, ACM Trans. Math. Softw., 42(4), 1-35. https://doi.org/10.1145/2930660   DOI
63 Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986, Learning representations by back-propagating errors, Nature, 323(6088), 533-536. https://www.nature.com/articles/323533a0   DOI
64 Shin, C., and Min, D.-J., 2006, Waveform inversion using a logarithmic wavefield, Geophysics, 71(3), R31-R42. https://sspace.snu.ac.kr/bitstream/10371/6107/1/Logarithm_inversion_2006_CSShin.pdf   DOI
65 Shin, C., and Cha, Y. H., 2008, Waveform inversion in the Laplace domain, Geophys. J. Int., 173(3), 922-931. https://doi.org/10.1111/j.1365-246X.2008.03768.x   DOI
66 Shin, C., and Ho Cha, Y., 2009, Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int., 177(3), 1067-1079. https://doi.org/10.1111/j.1365-246X.2009.04102.x   DOI
67 Shin, C., Pyun, S., and Bednar, J. B., 2007, Comparison of waveform inversion, Part 1: Conventional wavefield vs. logarithmic wavefield, Geophys. Prospect., 55, 449-464. https://scholar.google.co.kr/citations?user=9iBCrmcAAAAJ&hl=ko   DOI
68 Stefani, J., 1995, Turning ray tomography, Geophysics, 60(6), 1917-1929. https://library.seg.org/toc/gpysa7/60/6   DOI
69 Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, Geophysics, 69(1), 231-248. https://doi.org/10.1190/1.1649391   DOI
70 Song, C., and Alkhalifah, T. A., 2022, Wavefield Reconstruction Inversion via Physics-Informed Neural Networks, IEEE Trans. Geosci. Remote Sensing, 60, 1-12. http://dx.doi.org/10.1109/tgrs.2021.3123122   DOI
71 Sun, H., and Demanet, L., 2020, Extrapolated full-waveform inversion with deep learning, Geophysics, 85(3), R275-R288. https://doi.org/10.1190/geo2019-0195.1   DOI
72 Sun, J., Innanen, K. A., and Huang, C., 2021, Physics-guided deep learning for seismic inversion with hybrid training and uncertainty analysis, Geophysics, 86(3), R303-R317. https://doi.org/10.1190/geo2020-0312.1   DOI
73 Sun, J., Niu, Z., Innanen, K. A., Li, J., and Trad, D. O., 2020, A theory-guided deep-learning formulation and optimization of seismic waveform inversion, Geophysics, 85(2), R87-R99. https://doi.org/10.1190/geo2019-0138.1   DOI
74 Taner, M. T., and Koehler, F., 1969, Velocity spectra-digital computer derivation applications of velocity functions, Geophysics, 34(6), 859-881. https://doi.org/10.1190/1.1440058   DOI
75 Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49(8), 1259-1266. https://doi.org/10.1190/1.1441754   DOI
76 van Leeuwen, T., and Herrmann, F. J., 2013, Mitigating local minima in full-waveform inversion by expanding the search space, Geophys. J. Int., 195(1), 661-667. doi: 10.1093/gji/ggt258   DOI
77 Virieux, J., Brossier, R., Metivier, L., Operto, S., and Ribodetti, A., 2016, Direct and indirect inversions, J. Seismol., 20(4), 1107-1121. https://link.springer.com/article/10.1007/s10950-016-9587-3   DOI
78 van Leeuwen, T., and Herrmann, F. J., 2015, A penalty method for PDE-constrained optimization in inverse problems, Inverse Probl., 32(1), 015007. doi: 10.1088/0266-5611/32/1/015007   DOI
79 Vantassel, J. P., Kumar, K., and Cox, B. R., 2022, Using convolutional neural networks to develop starting models for near-surface 2-D full waveform inversion, Geophys. J. Int., 231(1), 72-90. https://doi.org/10.1093/gji/ggac179   DOI
80 Vigh, D., and Starr, E. W., 2008, 3D prestack plane-wave, fullwaveform inversion, Geophysics, 73(5), VE135-VE144. https://doi.org/10.1190/1.2952623   DOI
81 Wang, W., and Ma, J., 2019, VMB-Net: A deep learning network for velocity model building in a cross-well acquisition geometry, 89th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2569-2573. https://doi.org/10.1190/segam2019-3216078.1   DOI
82 Wang, W., McMechan, G. A., Ma, J., and Xie, F., 2021, Automatic velocity picking from semblances with a new deep-learning regression strategy: Comparison with a classification approach, Geophysics, 86(2), U1-U13. https://doi.org/10.1190/geo2020-0423.1   DOI
83 Wang, J., Xiao, Z., Liu, C., Zhao, D., and Yao, Z., 2019, Deep learning for picking seismic arrival times, J. Geophys. Res.-Solid Earth, 124(7), 6612-6624. https://doi.org/10.1029/2019JB017536   DOI
84 Warner, M., and Guasch, L., 2014, Adaptive waveform inversion: Theory, 84th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1089-1093. https://doi.org/10.1190/segam2014-0371.1   DOI
85 Warner, M., and Guasch, L., 2016, Adaptive waveform inversion: Theory, Geophysics, 81(6), R429-R445. https://doi.org/10.1190/geo2015-0387.1   DOI
86 Warner, M., Stekl, I., and Umpleby, A., 2007, Full wavefield seismic tomography - Iterative forward modeling in 3D, 69th International Annual Conference and Exhibition, EAGE, Extended Abstracts, C025. https://doi.org/10.3997/2214-4609.201401526   DOI
87 Woodward, M. J., Nichols, D., Zdraveva, O., Whitfield, P., and Johns, T., 2008, A decade of tomography: Geophysics, 73(5), VE5-VE11. https://doi.org/10.1190/1.2969907   DOI
88 Wu, R. S., Luo, J., and Wu, B., 2014, Seismic envelope inversion and modulation signal model, Geophysics, 79(3), WA13-WA24. doi: 10.1190/GEO2013-0294.1   DOI
89 Wu, Y., Lin, Y., and Zhou, Z., 2018, Inversionnet: Accurate and efficient seismic waveform inversion with convolutional neural networks, 88th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2096-2100. https://doi.org/10.1190/segam2018-2998603.1   DOI
90 Wu, Y., and Lin, Y., 2019, InversionNet: An efficient and accurate data-driven full waveform inversion, IEEE Trans. Comput. Imaging, 6, 419-433. https://doi.org/10.1109/TCI.2019.2956866   DOI
91 Wu, Y., and McMechan, G. A., 2019, Parametric convolutional neural network-domain full-waveform inversion, Geophysics, 84(6), R881-R896. https://doi.org/10.1190/geo2018-0224.1   DOI
92 Yang, F., and Ma, J., 2019, Deep-learning inversion: A nextgeneration seismic velocity model building method, Geophysics, 84(4), R583-R599. https://doi.org/10.1190/geo2018-0249.1
93 Yang, Y., Engquist, B., Sun, J., and Froese, B. D., 2016, Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion, arXiv preprint arXiv: 1612.05075. https://doi.org/10.48550/arXiv.1612.05075   DOI
94 Yang, Y., Engquist, B., Sun, J., and Hamfeldt, B. F., 2018, Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion, Geophysics, 83(1), R43-R62. https://doi.org/10.1190/geo2016-0663.1   DOI
95 Zhang, Z., and Lin, Y., 2020, Data-driven seismic waveform inversion: A study on the robustness and generalization, IEEE Trans. Geosci. Remote Sensing, 58(10), 6900-6913. https://doi.org/10.1109/TGRS.2020.2977635   DOI