DOI QR코드

DOI QR Code

Quasi-brittle and Brittle Fracture Simulation Using Phase-field Method based on Cell-based Smoothed Finite Element Method

셀기반 평활화 유한요소법에 기반한 위상분야법을 이용한 준취성 및 취성 파괴 시뮬레이션

  • Changkye Lee (University Core Research Center for Disaster-free & Safe Ocean City Construction, Dong-A University) ;
  • Sundararajan Natarajan (Department of Mechanical Engineering, Indian Institute of Technology Madras) ;
  • Jurng-Jae Yee (Department of Architectural Engineering, Dong-A University)
  • 이창계 (동아대학교 해양도시건설.방재연구소) ;
  • ;
  • 이정재 (동아대학교 건축공학과)
  • Received : 2023.06.23
  • Accepted : 2023.08.02
  • Published : 2023.10.31

Abstract

This study introduces a smoothed finite-element implementation into the phase-field framework. In recent years, the phase-field method has recieved considerable attention in crack initiation and propagation since the method needs no further treatment to express the crack growth path. In the phase-field method, high strain-energy accuracy is needed to capture the complex crack growth path; thus, it is obtained in the framework of the smoothed finite-element method. The salient feature of the smoothed finite-element method is that the finite element cells are divided into sub-cells and each sub-cell is rebuilt as a smoothing domain where smoothed strain energy is calculated. An adaptive quadtree refinement is also employed in the present framework to avoid the computational burden. Numerical experiments are performed to investigate the performance of the proposed approach, compared with that of the finite-element method and the reference solutions.

본 연구에서는 평활화 유한요소법(Smoothed finite element method)을 도입한 위상분야법(Phase-field method)에 대해 소개하고자 한다. 위상분야법은 최근 균열 개시 및 전파 해석에 많이 사용되는 기법으로 균열 표면을 추적하기 위한 추가적인 처리기법이 필요하지 않는 특징이 있다. 위상분야법에서 복잡한 균열 전파를 포착하기 위해 높은 정확도의 변형률 에너지를 평활화 유한요소법을 도입하여 계산하였다. 평활화 유한요소법은 유한요소를 하위 셀로 나누고 각각의 하위 셀을 평활화 영역으로 재조립하여 변형률 에너지를 계산하게 된다. 또한 해석 시간 단축을 위하여 쿼드트리 요소망을 제안한 기법에 사용하였다. 수치 예제를 통하여 제안한 기법을 참조해 및 유한요소법과 비교하여 검증하였다.

Keywords

Acknowledgement

This research is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03012812).

References

  1. Ambati, M., Gerasimov, T., De Lorenzis, L. (2014) A Review on Phase-Field Models of Brittle Fracture and a New Fast Hybrid Formulation, Comput. Mech., 55, pp.383~405.
  2. Amor, H., Marigo, J.-J., Maurini, C. (2009) Regularized Formulation of the Variational Brittle Fracture with Unilateral Contact: Numerical Experiments, J. Mech. & Phys. Solids, 57, pp. 1209~1229. https://doi.org/10.1016/j.jmps.2009.04.011
  3. Augarde, C.E., Deeks, A.J. (2008) The Use of Timoshenko's Exact Solution for a Cantilever Beam in Adaptive Analysis, Finite Elem. Anal. & Des., 44, pp.595~601. https://doi.org/10.1016/j.finel.2008.01.010
  4. Bordas, S.P.A., Rabczuk, T., Nguyen-Xuan, H., Nguyen, V.P., Natarajan, S., Bog, T., Quan, D.M., Hiep, N.V. (2010) Strain Smoothing in FEM and XFEM, Comput. & Struct., 88, pp.1419~1443. https://doi.org/10.1016/j.compstruc.2008.07.006
  5. Bourdin, B., Francfort, G.A., Marigo, J.-J. (2000) Numerical Experiments in Revisited Brittle Fracture, J. Mech. & Phys. Solids, 48, pp.797~826. https://doi.org/10.1016/S0022-5096(99)00028-9
  6. Dai, K.Y., Liu, G.R., Nguyen, T.T. (2007) An -sided Polygonal Smoothed Finite Element Method (SFEM) for Solid Mechanics, Finite Elem. Anal. & Des., 43, pp.847~860. https://doi.org/10.1016/j.finel.2007.05.009
  7. Finkel, R.A., Bentley, J.L. (1974) Quad Trees a Data Structure for Retrieval on Composite Keys, Acta Inform., 4, pp.1~9. https://doi.org/10.1007/BF00288933
  8. Francfort, G.A., Marigo, J.-J. (1998) Revisiting Brittle Fracture as an Energy Minimization Problem, J. Mech. & Phys. Solids, 46, pp.1319~1342. https://doi.org/10.1016/S0022-5096(98)00034-9
  9. Fries, T.-P., Belytschko, T. (2010) The Extended/Generalized Finite Element Method: An Overview of the Method and Its Applications, Int. J. Numer. Methods Eng., 84, pp.253~304. https://doi.org/10.1002/nme.2914
  10. Griffith, A.A. (1921) The Phenomenon of Rupture and Flow in Solids, Philos. Trans. Royal Soc. Lond., Series A, Containing Papers of a Mathematical or Physical Character, 221, pp. 163~198. https://doi.org/10.1098/rsta.1921.0006
  11. Hirshikesh, Natarajan, S., Annabattula, R.K. (2018) A FEniCS Implementation of the Phase Field Method for Quasi-static Brittle Fracture, Front. Struct. & Civil Eng., 13, pp.380~396. https://doi.org/10.1007/s11709-018-0471-9
  12. Lee, C.K., Singh, I.V., Natarajan, S. (2022) A Cell-based Smoothed Finite Element Method for Gradient Elasticity, Eng. with Comput., 39, pp.925~942.
  13. Liu, G.R., Dai, K.Y., Nguyen, T.T. (2007a) A Smoothed Finite Element Method for Mechanics Problems, Comput. Mech., 39, pp.859~877. https://doi.org/10.1007/s00466-006-0075-4
  14. Liu, G.R., Nguyen, T.T. (2016) Smoothed Finite Element Methods, CRC Press, Boca Raton.
  15. Liu, G.R., Nguyen, T.T., Dai, K.Y., Lam, K.Y. (2007b) Theoretical Aspects of the Smoothed Finite Element Method (SFEM), Int. J. Numer. Methods Eng., 71, pp.902~930. https://doi.org/10.1002/nme.1968
  16. Meyer, M., Lee, H., Barr, A., Desbrun, M. (2002) Generalized Barycentric Coordinates for Irregular Polygons, J. Graph. Tools, 7, pp.13~22. https://doi.org/10.1080/10867651.2002.10487551
  17. Miehe, C., Hofacker, M., Welschinger, F. (2010a) A Phase Field Model for Rate-independent Crack Propagation: Robust Algorithmic Implementation based on Operator Splits, Comput. Methods Appl. Mech. & Eng., 199, pp.2756~2778.
  18. Miehe, C., Welschinger, F., Hofacker, M. (2010b) Thermodynamically Consistent Phase-field Models of Fracture: Variational Principles and Multi-field FE Implementation, Int. J. Numer. Methods Eng., 83, pp.1273~1311. https://doi.org/10.1002/nme.2861
  19. Moes, N., Belytschko, T. (2002) Extended Finite Element Method for Cohesive Crack Growth, Eng. Fract. Mech., 69, pp.813~833. https://doi.org/10.1016/S0013-7944(01)00128-X
  20. Molnar, G., Gravouil, A. (2017) 2D and 3D Abaqus Implementation of a Robust Staggered Phase-field Solution for Modeling Brittle Fracture, Finite Elem. Anal. & Des., 130, pp.27~38. https://doi.org/10.1016/j.finel.2017.03.002
  21. Natarajan, S., Ooi, E.T., Song, C. (2013) Finite Element Computations on Quadtree Meshes: Strain Smoothing and Semi-analytical Formulation, Math.: Numer. Anal., arXiv, 1310.2913.
  22. Surendran, M., Natarajan, S., Bordas, S.P.A., Palani, G.S. (2017) Linear Smoothed Extended Finite Element Method, Int. J. Numer. Methods Eng., 112, pp.1733~1749. https://doi.org/10.1002/nme.5579
  23. Wachspress, E.L. (1971) A Rational Basis for Function Approximation, IMA J. Appl. Math., 8, pp.57~68. https://doi.org/10.1093/imamat/8.1.57
  24. Warren, J., Schaefer, S., Hirani, A., Desbrun, A. (2007) Barycentric Coordinates for Convex Sets, Adv. Comput. Mech., 3, pp. 319~338.
  25. Yoo, H.-S., Kim, H.-S. (2016) Simulation of Multi-Cracking in a Reinforced Concrete Beam by Extended Finite Element Method, J. Comput. Struct. Eng. Inst. Korea, 29, pp.201~208. https://doi.org/10.7734/COSEIK.2016.29.2.201
  26. Zeng, W., Liu, G.R. (2018) Smoothed Finite Element Methods (S-FEM): An Overview and Recent Development, Arch. Comput. Methods Eng., 25, pp.397~435. https://doi.org/10.1007/s11831-016-9202-3
  27. Zhuang, X., Zhou, S., Huynh, G.D., Areias, P., Rabczuk, T. (2022) Phase Field Modeling and Computer Implementation: A Review, Eng. Fract. Mech., 262, p.108234.