DOI QR코드

DOI QR Code

Impact Assessment of Sea_Level Rise based on Coastal Vulnerability Index

연안 취약성 지수를 활용한 해수면 상승 영향평가 방안 연구

  • Lee, Haemi (Future Environmental Strategy Research Group, Korea Environment Institute) ;
  • Kang, Tae soon (Dept. of Coastal Management, GeoSystem Research Corp.) ;
  • Cho, Kwangwoo (Future Environmental Strategy Research Group, Korea Environment Institute)
  • 이해미 (한국환경정책.평가연구원) ;
  • 강태순 ((주)지오시스템리서치 연안관리부) ;
  • 조광우 (한국환경정책.평가연구원)
  • Received : 2015.08.24
  • Accepted : 2015.09.21
  • Published : 2015.10.31

Abstract

We have reviewed the current status of coastal vulnerability index(CVI) to be guided into an appropriate CVI development for Korean coast and applied a methodology into the east coast of Korea to quantify coastal vulnerability by future sea_level rise. The CVIs reviewed includes USGS CVI, sea_level rise CVI, compound CVI, and multi scale CVI. The USGS CVI, expressed into the external forcing of sea_level rise, wave and tide, and adaptive capacity of morphology, erosion and slope, is adopted here for CVI quantification. The range of CVI is 1.826~22.361 with a mean of 7.085 for present condition and increases into 2.887~30.619 with a mean of 12.361 for the year of 2100(1 m sea_level rise). The index "VERY HIGH" is currently 8.57% of the coast and occupies 35.56% in 2100. The pattern of CVI change by sea_level rise is different to different local areas, and Gangneung, Yangyang and Goseong show the highest increase. The land use pattern in the "VERY HIGH" index is dominated by both human system of housing complex, road, cropland, etc, and natural system of sand, wetland, forestry, etc., which suggests existing land utilization should be reframed in the era of climate change. Though CVI approach is highly efficient to deal with a large set of climate scenarios entailed in climate impact assessment due to uncertainties, we also propose three_level assessment for the application of CVI methodology in the site specific adaptation such as first screening assessment by CVI, second scoping assessment by impact model, and final risk quantification with the result of impact model.

본 연구는 해수면 상승 취약성 지수 개발을 통한 국가차원의 효율적인 대응을 위하여 기존 연안 취약성 지수 현황을 조사하고, 우리나라 동해안 적용을 통하여 미래 취약성을 평가하였다. 본 연구에서 조사한 취약성 지수는 미국지질조사국(USGS) 지수, 해수면 상승 지수, 복합 취약성 지수, 다중스케일 취약성 지수를 포함하며, 이 중국가정책 차원의 활용도와 가용 자료를 고려하여 연안 외력(해수면 상승, 파랑, 조석)과 해안의 적응 능력(지형, 침식률, 경사도)의 함수로 취약성을 나타내는 USGS 지수를 선정 평가하였다. 현재 동해안의 취약성 지수는 1.826~22.361(평균 7.085)이였으며, 1 m 해수면 상승 시 2.887~30.619(평균 12.361)로 증가하였다. 매우 높은(VERY HIGH) 취약도를 나타내는 해안은 현재 8.57%에서, 1 m 해수면 상승 시 35.56%로 증가하였다. 취약도 변화는 지자체에 따라 다르게 나타났으며, 강릉시, 양양군, 고성군에서 높게 나타났다. 이들 위험 지역의 토지이용은 농지, 주거지, 도로 등의 인간시스템과 사빈, 습지, 산림 등의 자연시스템 공히 많은 분포를 나타내어, 기후변화 시대의 해안토지이용의 변화를 요구하는 것으로 나타났다. 본 연구는 취약성 지수의 정책적 활용 및 특정 취약 해안 적응을 위하여 취약성 지수에 의한 스크리닝, 영향 모델에 의한 취약지 영향평가 및 이들 평가에 기초한 확률적 리스크 정량화 등 3단계 취약성 평가 체계를 제안하였다.

Keywords

References

  1. Australian Government-Department of Climate Change (2009). Climate Change Risks to Australia's Coast.
  2. Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and White, L.L. (2014). IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  3. Bird, E. (2008). Coastal Geomorphology: An Introduction. Wiley.
  4. Cohen, J.E., C. Small, A. Mellinger, J. Gallup and Sachs (1997). Estimates of Coastal Populations. Science 278, 1211-1212.
  5. Gangwondo (2010). Coastal Erosion Monitoring Report (in Korean).
  6. Gommes, R., J. du Guerny, F. Nachtergaele, and Brinkman, R. (1998). Potential Impacts of Sea-Level Rise on Populations and Agriculture. FAO, UNSD.
  7. Gornitz V.M. (1990). Vulnerability of the East Coast, USA to future sea level rise. Journal of Coastal Research, Special Issue No. 9, 201-237.
  8. Gornitz V.M. (1991). Global coastal hazards from future sea level rise. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), 89 (1991) 379-398. https://doi.org/10.1016/0031-0182(91)90173-O
  9. Hammer-Klose E.S. and Thieler E.R. (2001). Coastal vulnerability to sea-level rise, a preliminary database for the U.S. Atlantic, Pacific, and Gulf of Mexico coasts. U.S. Geological Survey, Digital Data Series DDS-68, 1 CD. Available on-line at: http://pubs.usgs.gov/dds/dds68/ (last access: 10.08.2011).
  10. IPCC (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
  11. Kang, J.W., Moon S.R. and Oh N.S. (2005). Sea Level Rise at the Southwestern Coast. KSCE J. of Civil Engineering. 25(2B), 151-157 (in Korean).
  12. Kang, T.S. (2014). A study on the framework of coastal vulnerability assessment. Ph.D. Dissertation, Pukyong National University, Busan (in Korean).
  13. Kim, T.Y. and Cho, K.W. (2013). Forecasting of Sea-Level Rise using a Semi-Empirical Method. J. of Korean Society of Marine Environment & Safety, 19(1), 1-8 (in Korean). https://doi.org/10.7837/kosomes.2013.19.1.001
  14. Korea Environment Institute (2009). Vulnerability Assessment of the Korean Coast due to Sea-level Rise and Appropriate Response Strategies I- Assessment of Shoreline Retreat (in Korean).
  15. Korea Environment Institute (2011). National Assessment on Sea_Level Rise Impact of Korean Coast in the Socioeconomic Context I (in Korean).
  16. Korea Environment Institute (2012). National Assessment on Sea_Level Rise Impact of Korean Coast in the Socioeconomic Context II (in Korean).
  17. Korea Environment Institute (2013). National Assessment on Sea_Level Rise Impact of Korean Coast in the Socioeconomic Context III (in Korean).
  18. Korea Hydrographic and Oceanographic Administration (2014a). Studies on the Development of Sea_level Change Analysis Technique (in Korea).
  19. Korea Hydrographic and Oceanographic Administration (2014b). Tide Table (in Korean).
  20. Korea Ocean and Research Development Institute (2003). Estimation of long-term wave data: simulation results of HYPA model (in Korean).
  21. Levina, E. and Tirpak, D. (2006). Adaptation to Climate Change: Key Terms. Paris: OECD.
  22. McLaughlin S. and Cooper J.A.G. (2010). A multi-scale coastal vulnerability index: A tool for coastal managers, Environmental Hazards, Volume 9, Number 3, 2010, 233-248(16). https://doi.org/10.3763/ehaz.2010.0052
  23. Ministry of Environment (2014). VESTAP User Guidebook: Web_based Vulnerability Assessment Supporting Tool (in Korean).
  24. National Institute of Environmental Science (2014). Global Warming Impact on Japan.
  25. Ojeda-Zujar J., Alvarez-Francosi J.I., Martin-Cajaraville D. and Fraile-Jurado P. (2009). El uso de las TIG para el calculo del indice de Vulnerabilidad costera(CVI) ante una potencial subida del nivel del mar en la costa andaluza (Espana). GeoFocus, 9, p-83-100. ISSN. 1578-5157.
  26. Ozyurt G. (2007). Vulnerability of coastal areas to sea level rise: a case of study on Goksu Delta. Thesis submitted to the Graduate School of Natural and Applied Sciences of Middle-East Technical University. January 2007. Available on-line at: http://etd.lib.metu.edu.tr/upload/12608146/index.pdf (last access: 10.08.2011).
  27. Ozyurt G., Ergin A. and Esen M. (2008). Indicator based coastal vulnerability assessment model to sea level rise. Paper presented at the Seventh International Conference on Coastal and Port Engineering in Developing Countries COPEDEC VII "Best Practices in the Coastal Environment", 24-28 February 2008, Dubai, UAE.
  28. Parry, M.L. O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, United Kingdom.
  29. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and Midgley, P. M. (2013). IPCC Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  30. Szlafsztein C. and Sterr H. (2007). A GIS-based vulnerability assessment of coastal natural hazards, State of Para, Brazil. Journal of Coastal Conservation 11(1), 53-66. https://doi.org/10.1007/s11852-007-0003-6
  31. Tachikawa T., Hato, M., Kaku, M. and Iwasaki, A. (2011). The characteristics of ASTER GDEM version 2, IGARSS.
  32. Thieler, E.R. and Hammar-Klose, E. S. (1999). National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the U.S. Atlantic Coast. U.S. Geological Survey, Open-File Report 99-593, 1 sheet.
  33. U.S. Global Change Research Program (2013). Climate Change Impacts in the United States.
  34. UK Government (2013). The National Adaptation Programme: Making the Country Resilient to a Changing Climate.
  35. USGS Woods Hole Coastal and Marine Science Center. http://woodshole.er.usgs.gov/project-pages/cvi/index.html
  36. Vermeer, M. and Rahmstorf, S. (2009). Global Sea Level Linked to Global Temperature, PNAS, 106(51): 21527-21532. https://doi.org/10.1073/pnas.0907765106
  37. Yoo, G.Y. and Kim, I.A. (2008). Development and Application of a Climate Vulnerability Index. Korea Environment Institute (in Korean).