• Title/Summary/Keyword: OSB

Search Result 51, Processing Time 0.027 seconds

GOLDIE EXTENDING PROPERTY ON THE CLASS OF z-CLOSED SUBMODULES

  • Tercan, Adnan;Yasar, Ramazan;Yucel, Canan Celep
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.453-468
    • /
    • 2022
  • In this article, we define a module M to be Gz-extending if and only if for each z-closed submodule X of M there exists a direct summand D of M such that X ∩ D is essential in both X and D. We investigate structural properties of Gz-extending modules and locate the implications between the other extending properties. We deal with decomposition theory as well as ring and module extensions for Gz-extending modules. We obtain that if a ring is right Gz-extending, then so is its essential overring. Also it is shown that the Gz-extending property is inherited by its rational hull. Furthermore it is provided some applications including matrix rings over a right Gz-extending ring.

Moistureproof Characteristics of Woodboard Types with Surface Thermal Changes (목질 보드류의 표면 열변화에 따른 접촉각(방습) 특성)

  • Shin, Sang-Ho;Liim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.161-162
    • /
    • 2020
  • In this study, as part of securing related data, water droplets were dropped on the upper part of the wooden board for flooring in an environment such as floor heating, and the degree of absorption according to the surface temperature change was tested. The test results showed that the contact angle of the surface was low (25℃→40℃) or the droplet was absorbed into the small plate and disappeared. The contact angle of the OSB and MDF was decreased within 30 minutes, but the surface water droplet was maintained longer than the plywood. This is because the surface is coated with hydrophobicity unlike the plywood, but moisture absorption in the cross section after the second processing will not be prevented and it will lead to defect occurrence problem.

  • PDF

Evaluation of The Hygrothermal Performance by Wall Layer Component of Wooden Houses Using WUFI Simulation Program (WUFI 시뮬레이션 프로그램을 이용한 목조주택 벽체 레이어 구성에 따른 hygrothermal 성능 평가)

  • Kang, Yujin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • Thermal performance of wooden houses used by building materials effectively contributing to building energy saving has been improved. However, the performance was decreased to the condensation and mould growth from exterior wall because the moisture control was difficult to high insulation and airtightness. Therefore, the hygrothermal performance of exterior wall, that selected 5 types of wooden houses, evaluated using the hygrothermal simulation program: heat and moisture behavior, condensation and mould growth risk. Wooden houses were selected Rural houses standard plans '10 and '14, $2^{{\prime}{\prime}}{\times}6^{{\prime}{\prime}}$ type, EIFS and wood-based passive house. And the wall A, B, C, D and E were determined by layer component of each wall. The U-value of exterior wall are 0.171, 0.172, 0.221, 0.150, $0.079W/m^2K$. The OSB absolute water content of the wall A and C was exceeds the reference value of 20%, and it was confirmed that condensation occur at insulation material inner surface through the condensation evaluation in the winter. The wall D and E showed excellent results with condensation and water content evaluation compared to others. However, mould growth risk assessment in all five types of wall had have risk. We were determined that hygrothermal performance difference of exterior wall occur the difference in the layer structure rather than in thermal performance.

Shear Resistance of Light-gauge Steel Stud Wall infilled with light-weight foamed mortar (경량기포모르터와 합성한 경량형강 벽체의 전단 저항)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.397-406
    • /
    • 2004
  • This paper presents the test and evaluation results on the shear strength and stiffness of a light steel stud wall from a lightweight foamed mortar (lightweight hybrid wall). The use of a lightweight foamed mortar was aimed at improving structural performance, thermal performance, and finish. Studiesshowed that it did not affect thermal performance, but it contributed to structural performance and finish when the unit weight was more than 0.8 (Editor's note: Please indicate the unit of measurement.). In this study, 14 specimens-whose parameters included the specific gravity of the lightweight foamed mortar (0.6, 0.8, 1.0, 1.2), the spacing of the stud (450 mm, 600 mm, or 900 mm), finishing materials (such as lightweight foamed mortar, OSB, and gypsum board), and bracing-were manufactured. Three typical, steel house-framing specimens were added to compare the test results with the 14 specimens. The results of in-plane shear tests show that the use of lightweight foamed mortar (1.15~5.38 times stronger, 1.45~13.7 times stiffer) results in ultimate strength and initial stiffness. In addition, it was possible to widen the stud spacing to up to 900 mm without decreasing shear strength. It was very important to prevent the lightweight foamed mortar from shrinking and to secure the adhesion between the steel stud and the lightweight foamed mortar to improve structural performance.

Diversity of the Cretaceous basaltic volcanics in Gyeongsang Basin, Korea (경상분지내 백악기 현무암질 화산암류의 다양성)

  • 김상욱;황상구;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • The Cretaceous basaltic rocks in Gyeongsang Basin are temporally and spatially dispersed widely in thick sedimentary piles: Chilgog basaltic rock (CGB) and Cheongyongsa basaltic rock (CSB) in the Shindong Group, and Hakbong basaltic rocks (HBB), Osibbong basalt (OSB), Secheondong basaltic rocks (SCB), Haman basaltic rocks (HAB), Hama basaltic rocks (HMB), and Chaeyaksan basaltic rocks (CYB) in the Hayang Group, upwardly in their stratigraphy. Chilgog basaltic rock is merely identified as pebbles in the Shilla Conglomerate and its provenance has not been found, and it is characteristics that the volcanics except Osibbong basalt and Chaeyaksan basaltic rocks are very small in both of their thickness and extension. Petrochemical diversity of the basaltic rocks are revealed; OSB and SCB distributed in the Yeongyang Minor Basin preserve the calc-alkaline natures in major and immobile minor element geochemistry, but CGB, HBB, HAB, and CYB reflect that they might be originated from calc-alkaline basaltic magma of volcanic arc in continental margin area by trace elements and altered to alkaline suites in the viewpoint of their major element geochemistry. Major and trace element geochemistry of CSB and HMB suggests that they may be derived from within -plate alkaline magma contaminated by the upper continental crust, especially in the case of the former.

  • PDF

Ignition and Heat Release Rate of Wood-based Materials in Cone Calorimeter Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This study was performed to evaluate the burning characteristics of wood-based materials and the effect of surface treatment of fire retardant using cone calorimeter. Four types of wood-based materials, such as Plywood, Oriented Strand Board (OSB), Particle Board (PB) and Medium Density Fiberboard (MDF), were tested at a constant heat flux of $50kW/m^2$ to investigate the time to ignition, mass loss rate, heat release rate, effective heat of combustion, etc. In addition, each type of wood-based material was tested at the same heat flux after fire retardant treatment on the surface to evaluate the effect of this treatment on the burning characteristics. The surface treatment of fire retardant, by the amount of $110g/m^2$, delayed the time to ignition almost twice. However, it was indicated that heat release rate, mass loss rate, and effective heat of combustion were not significantly affected by fire retardants treatment for all types of wood-based materials.

Analysis of Hygrothermal Performance of Wood Frame Walls according to Position of Insulation and Climate Conditions

  • Kang, Yujin;Chang, Seong Jin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.264-273
    • /
    • 2016
  • The insulation of a building envelope influences the hygrothermal performance as well as the thermal performance of the building. While most of Korean wood frame houses have an interior insulation system, the exterior insulation system with high thermal performance has recently been applied. While it can be effective in energy savings for better insulation performance, without consideration of the moisture, condensation and mould growth can occur. Therefore, in this study, hygrothermal behaviour, water content, and mould growth were analyzed using hygrothermal simulation of an exterior wall of a wood frame house with which the interior insulation and exterior insulation systems were applied. The wall layer included Wall A (Interior insulation) and Wall B (Exterior insulation). The U-values were identified as 0.173 and $0.157W/m^2K$, respectively. The total water content and OSB absolute water content of Wall A were confirmed to be higher than those of Wall B, but the absolute water content did not exceed the reference value of 20%. The moisture content of the two walls was determined to be stable in the selected areas. However, mould growth risk analysis confirmed that both Wall A and Wall B were at risk of mould growth. It was confirmed that as the indoor setting temperature decreased, the mould index and growth rate in the same area increased. Therefore, the mould growth risk was affected more by indoor and outdoor climate conditions than by the position of the insulation. Consequently, the thermal performance of Wall B was superior to that of Wall A but the hygrothermal performances were confirmed to be similar.

Nail Shear Performance of Structural Members with OSB (오에스비에 대한 각종 부재의 못전단성능)

  • Hwang, Kweonhwan;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.66-76
    • /
    • 2008
  • Recently, demands for the structural uses with domestic Japanese larch and SPF(spruce-pine-fir) lumber from North America have been increased. Shear properties of nailed joints that are the most simple and optimum fastening method in wooden constructions, especially in light frame construction. For the nailed joints, in North America and Japan, a number of basic and practical studies have been performed. The shear behaviors for the double nailed joint with variations of member and its direction, were examined. Shear properties of the shear specimens with SPF stud showed more remarkable variation than larch glulam and larch stud. Furthermore, the relationships between slip modulus and strength are not coincided in every case.

Racking Property of Light-framed Shear Wall with Hold-down Connector (홀드다운을 적용한 경골목조 벽체의 전단성능)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • As the height of the light-framed building increases, the lateral load and overturn-moment are increased and the possibility of the building overturn becomes larger. Because the shear wall resists lateral load in light-framed building, the reinforcement of shear wall is required. In order to reinforce the light-framed shear wall, using lag screw fastener type (B-HD) and using bolt type (S-HD) hold-down connectors were applied for test. And domestic larch lumbers, $38{\times}140mm$ and $89{\times}140mm$, KS 2nd grade, were used for the stud. The North American OSB panels were used for sheathing panel. Static loads, load speed 6 mm/min, were applied on top of the wall. As a result, shear strength of the wall that using hold-down connector was improved sufficiently. And when applying the S-HD type hold-down connector, stud should be reinforced against weakening by drilled hole. As increasing the number of lag screw, the number of bolt and the product allowable strength, the strength of shear wall that using hold-down connector was also increased. When applying hold-down connector to light-framed building using 38 mm stud, it must be reinforced by enlarging the thickness of stud like as 38 mm doubled column.

Shear Performance of Post and Beam Construction by Pre-Cut Process (프리컷 방식을 적용한 기둥-보 공법의 수평전단내력)

  • Hwang, Kweonhwan;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1-12
    • /
    • 2007
  • For the purpose of effective utilization of domestic second-grown larch as structural members, post and beam construction applying traditional construction to Japanese larch glulam members was adopted with processing by machine pre-cut method. In general, horizontal shear test by KS F 2154 is conducted to assess the horizontal shear properties of the wooden structure by post and beam construction. The frame was consisted of post and beam member with appropriate fasteners, and members have their own processed parts (notch, hole, etc.) that can be well-connected each other. The shear wall was consisted of the frame with screw-nail sheathed panel (OSB). The results of horizontal shear loading tests without vertical loads conducted on the frame and the shear wall structures, the maximum strengths were about 1.9 kN/m and about 9.7 kN/m, the shear rigidities were about 167 kN/rad, 8198 kN/rad, respectively. The strength proportion of the frame specimen was about 20% of the wall's and about 2% in initial stiffness. Nail failures are remarkable on the shear wall specimen with punching shears and shear failures. The shear load factor for the shear wall specimen by the method of Architectural Institute of Japan was 1.5, which was obtained by the bi-linear method. Loading method should be considered to obtain smooth load-deformation relationship. For the better shear performance of the structures, column base and post and beam connections and sheathed panel should be further examined as well.