• Title/Summary/Keyword: O-Algorithm

Search Result 1,529, Processing Time 0.026 seconds

Finding a Temperature Control Method in Microwave Oven using Genetic Algorithm (Genetic Algorithm을 이용한 전자레인지 온도 최적 제어패턴 구현)

  • 최이존;이승구;임형택;김성현;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.98-103
    • /
    • 1995
  • In this paper, a method is presented for finding an optimal temperature control pattern in microwaveoven using genetic algorithm. Power spectrum of temperature variance of charcoal is obtained and oven system modeling with fuzzy-neural-network is explained. Fan on/off timing is converted to strings in gene pool and then genetic iterations make the power spectrum of simmulated temperature variance of microwave oven closer to that o charcoal.

  • PDF

A Fast Algorithm for the Generalized Multiple Choice Linear Knapsack Problem (일반 다중선택 선형배낭문제의 신속한 해법연구)

  • Won, Joong-Yeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.519-527
    • /
    • 1995
  • By finding some new properties, we develop an O($r_{max}n^2$) algorithm for the generalized multiple choice linear knapsack problem where $r_{max}$ is the largest multiple choice number and n is the total number of variables. The proposed algorithm can easily be embedded in a branch-and-bound procedure due to its convenient structure for the post-optimization in changes of the right-hand-side and multiple choice numbers. A numerical example is presented.

  • PDF

Performance Improvement of Active Noise Control Using Co-FXLMS Algorithm (Co-FXLMS 알고리듬을 이용한 능동소음제어 성능의 향상)

  • Kwon, O-Cheol;Lee, Gyeong-Tae;Park, Sang-Gil;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.284-292
    • /
    • 2008
  • The active control technique mostly uses the least-mean-square(LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time, particularly when the Filtered-X LMS(FXLMS) algorithm is applied to an active noise control(ANC) system. However, FXLMS algorithm has the demerit that stability of the control is decreased when the step size become larger but the convergence speed is faster because the step size of FXLMS algorithm is fixed. As a result, the system has higher probability which the divergence occurs. Thus the Co-FXLMS algorithm was developed to solve this problem. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Co-FXLMS algorithm is presented in comparison with the FXLMS algorithm. Simulation and experimental results show that active noise control using Co-FXLMS is effective in reducing the noise in duct system.

Performance Improvement of Active Noise Control Using Co-FXLMS Algorithm (Co-FXLMS 알고리듬을 이용한 능동소음제어 성능의 향상)

  • Lee, Hae-Jin;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.598-603
    • /
    • 2007
  • The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time, particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, FXLMS algorithm has the demerit that stability of the control is decreased when the step size become larger but the convergence speed is faster because the step size of FXLMS algorithm is fixed. As a result, the system has higher probability which the divergence occurs. Thus the Co-FXLMS algorithm was developed to solve this problem. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Co-FXLMS algorithm is presented in comparison with the FXLMS algorithm. Simulation results show that active noise control using Co-FXLMS is effective in reducing the noise in duct system.

  • PDF

Algorithm for Minimum Linear Arrangement(MinLA) of Binary Tree (이진트리의 최소선형배열 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.99-104
    • /
    • 2024
  • In the deficiency of an exact solution yielding algorithm, approximate algorithms remain as a solely viable option to the Minimum Linear Arrangement(MinLA) problem of Binary tree. Despite repeated attempts by a number of algorithm on k = 10, only two of them have been successful in yielding the optimal solution of 3,696. This paper therefore proposes an algorithm of O(n) complexity that delivers the exact solution to the binary tree. The proposed algorithm firstly employs an In-order search method by which n = 2k - 1 number of nodes are assigned with a distinct number. Then it reassigns the number of all nodes that occur on level 2 ≤ 𝑙 ≤ k-2, (k = 5) and 2 ≤ 𝑙 ≤ k-3, (k = 6), including that of child of leaf node. When applied to k=5,6,7, the proposed algorithm has proven Chung[14]'s S(k)min=2k-1+4+S(k-1)min+2S(k-2)min conjecture and obtained a superior result. Moreover, on the contrary to existing algorithms, the proposed algorithm illustrates a detailed assignment method. Capable of expeditiously obtaining the optimal solution for the binary tree of k > 10, the proposed algorithm could replace the existing approximate algorithms.

Merging Algorithm for Relaxed Min-Max Heaps Relaxed min-max 힙에 대한 병합 알고리즙

  • Min, Yong-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1E
    • /
    • pp.73-82
    • /
    • 1995
  • This paper presents a data structure that implements a mergeable double-ended priority queue ; namely, an improved relaxed min-max-pair heap. It suggests a sequential algorithm to merge priority queues organized in two relaxed min-max heaps : kheap and nheap of sizes k and n, respecrively. This new data sturuture eliminates the blossomed tree and the lazying method used to merge the relaxed min-max heaps in [8]. As a result, the suggested method in this paper requires the time complexity of O(log(log(n/k))*log(k)) and the space complexity of O(n+), assuming that $k{\leq}{\lfloor}log(size(nheap)){\rfloor}$ are in two heaps of different sizes.

  • PDF

Pipelined Broadcast with Enhanced Wormhole Routers (개선된 윔홀 라우터를 이용한 파이프라인 브로드캐스트)

  • Jeon, Min-Soo;Kim, Dong-Seung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.1
    • /
    • pp.10-15
    • /
    • 2002
  • This paper proposes the Pipelined Broadcast that broadcasts a message of size m in O(m+n-1) time in an n-dimensional hypercube. It is based on the replication tree, which is derived from the reachable sets. It greatly improves the performance compared to Ho-Kao s algorithm with the time of O(m[n/log(n+1)]). The communication in the broadcast uses all-port wormhole router with message replication capability. This paper includes the algorithm together with performance comparisons to previous schemes in practical implementation.

A Development of Pulse Oximeter module for Measurement of $SpO_2$ (산소포화도 측정을 위한 모듈형 펄스 옥시메터 개발)

  • 이한욱;이주원;이종회;조원래;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.575-583
    • /
    • 2000
  • Pulse oximetry is a well established non-invasive optical technique for monitoring the $SpO_2$ during anaesthesia, recovery and intensive care. Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. In the measurement of the hemoglobin oxygen saturation, conventional method has required the technique of filtering of remove the noise, and of complex signal processing algorithm. So much time have been required to signal processing. In this research, we separate AC signal and DC signal in the stage of signal detection. Therefore we simplify the calculation algorithm for $SpO_2$. The implemented system have the high performance such an accuracy and a processing time than the traditional method.

  • PDF

The Design of Parallel Routing Algorithm on a Recursive Circulant Network (재귀원형군에서 병렬 경로 알고리즘의 설계)

  • Bae, Yong-Keun;Park, Byung-Kwon;Chung, Il-Yong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2701-2710
    • /
    • 1997
  • Recursive circulant graph has recently developed as a new model of multiprocessors, and drawn considerable attention to supercomputing, In this paper, we investigate the routing of a message i recursive circulant, that is a key to the performance of this network. On recursive circulant network, we would like to transmit m packets from a source node to a destination node simultaneously along paths, where the ith packet will traverse along the ith path $(o{\leq}i{\leq}m-1)$. In oder for all packets to arrive at the destination node quickly and securely, the ith path must be node-disjoint from all other paths. For construction of these paths, employing the Hamiltonian Circuit Latin Square(HCLS), a special class of $(n{\times}n)$ matrices, we present $O(n^2)$ parallel routing algorithm on recursive circulant network.

  • PDF

Fitting a Piecewise-quadratic Polynomial Curve to Points in the Plane (평면상의 점들에 대한 조각적 이차 다항식 곡선 맞추기)

  • Kim, Jae-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • In this paper, we study the problem to fit a piecewise-quadratic polynomial curve to points in the plane. The curve consists of quadratic polynomial segments and two points are connected by a segment. But it passes through a subset of points, and for the points not to be passed, the error between the curve and the points is estimated in $L^{\infty}$ metric. We consider two optimization problems for the above problem. One is to reduce the number of segments of the curve, given the allowed error, and the other is to reduce the error between the curve and the points, while the curve has the number of segments less than or equal to the given integer. For the number n of given points, we propose $O(n^2)$ algorithm for the former problem and $O(n^3)$ algorithm for the latter.