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ABSTRACT

This paper presents a data structure that implements a mergeable double-ended priority queue : namely, an 
improved relaxed min-max-pair heap. It suggests a sequential algorithm to merge priority queues org거nized m two 
relaxed min-max heaps : kheap and nheap of sizes k and n, respectively. This new data structure eliminates the 
blossomed tree and the lazymg method used to merge the relaxed min-max heaps in [8]. As a result, the suggested 
method in this paper requires the time complexity of O(log(log(n/k)) *log(k) ) and the space complexity of O(n 
+ k), assuming that k M [ log (size( nheap)) J are in two heaps of different sizes.

요 약

본 논문은 relaxed min-max heap을 병 합시키 기 위 하여 이용된 새로운 자료구조인 개선된 relaxed min-max-pair 힙으로 

서, 두개의 relaxed mm-max 힙 즉, 크 기 가 n인 relaxed min-max nheap고+ 크기 사 k인 relaxed min-max kheap으로 구성된 

우선 순위 큐를 병합시키기 위한 순차적 알고리즘을 제시하고자 한다. 본 논문에서 제시된 방법은 [8]에 제시된 방법에서 

relaxed min-max 힙을 병합 시키기 위해서 이용된 blossomed tree와 lazying 방법을 제서하여도 병합이 되는 새로운 기법 

올 제시하였다. 결과적으로 본 논문에서 제시된 방법은 두개의 relaxed min-max 힙의 크기가 서로 다른 경우로서, 이때 크 

기 kM Llog(size(nheap))J인 경우, 시간 복잡도가 O(iog(log(n/k)) * k)g(k)) 이고 공간복잡도가 O(n+ k) 임을 볼 

수가 있다.

I. Introduction

The priority queue is an important abstract da- 
ta structure in computer science. It has been suc­
cessfully used for applications such as sorting, 
network optimization, discrete-event simulation, 
and state-space searches [8].

The operations defined in priority queues are as 
follows :

(a) min : returns the element or the address of 
the element with the smallest priority :

(b) insert(k) : adds the item containing the key 
k to the queue Q :

(c) delete : removes the item containing the sm- 
allest key from the queue ;
and
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(d) merge(q, q') : all elements of q' are added 
to q while q' is dest royed,

A data structure implementing a priority queue 
is often called a heap. The heap is considered an 
optimal implementation of a priority queue and 
has been the subject of almost three decades of 
research. In essence, a heap [1, 2, 7, 8] is a tree 
has the following properties : (a) it is heap-order­
ed ；that is, a key contained in any node is not 
greater than the keys of its offspring ; and (b) all 
leaves are on, at most, two adjacent levels, and 
all leaves on the last level are as far to the left as 
possible.

A heap is a min heap if it supports operation 
min which returns the element or the address of 
the element with the smallest priority and is a 
max heap if it supports operation max which re­
turns the element or the address of the element 
with the largest priority. Operation (d) is suppor­
ted by the leftist heaps proposed by Crane and by 
the binomial queues proposed by Vuillemen. Other 
priority queue implementations include the skew 
heap, the Fibonacci heap, the relaxed heap, and 
the pairing heap. Recently, Olariu et al. [4] sug­
gested a double-ended priority queue implemen­
tation called the min-max-pair heap, which sup­
ports sublinear time merging. Y. Ding and M. A. 
Weiss [8] published a priority queue implemen­
tation called the relaxed min-max heap, which 
supports all the priority operations. The key idea 
of this method is 나lat, by properly relaxing the 
order restrictions for min-max heaps, it can mer­
ge two reg니ar-sized min-max heaps. To merge 
two regular-sized min-max heaps, however, this 
method uses the blossomed tree and the lazying 
merging method.

In this paper, we provide a priority queue im­
plementation called an improved relaxed min-max- 
pair heap, which efficiently supports the priority 
queue operation (d). Throughout the improved 
relaxed min-max-pair heap, we solve the problem 
without the blossomed tree and the lazying mer­

ging method that are used to merge two relaxed 
min-max heaps in [8〕. Then, we proposed a sequ­
ential algorithm to efficiently merge the relaxed 
min-max heaps. For purposed of our discussion, 
the relaxed min-max nheaps are split into two 
cases : (1) two perfect heaps of equal size : and 
(2) two heaps of different sizes. If size n of the 
relaxed min-max nheap and size k of the relaxed 
min-max kheap are the same, the merging algor­
ithm is determined by the creation function. This 
algorithms is based on an array implementation of 
the relaxed min-max heaps. As a result, we re­
quire the time complexity of O(log(log(n/k) * 
log(n)).

The rest of this paper is organized as follows. 
Section II presents the basic definitions related 
to the merging and use of relaxed min-max heaps. 
Section ID describes the basic algorithm for mer­
ging two heaps of size n and k. Section IV discuss 
the results of this method, and Section V pre­
sents our conclusions.

II. Basic Definition

We will first give some definitions related to 
the merging of relaxed heaps and then define a 
new data structure : namely, the improved relaxed 
min-max-pair heaps.

We defined a perfect heap as a heap with 21 —1 
elements, in which all leaves are on the same 
level : otherwise, the heap is non-perfect. The 
pheap is rooted at p, similar to the subheap 
rooted at p. Let the size (heap) refer to the num­
ber of elements it contains, and the height be de­
fined as L log(size(heap)) J. We introduce a func­
tion h(heap) to return the height of a heap. We 
define slots of those leaf positions in nheap that 
are to be filled by merging processes [7]. In this 
paper, we regard the relaxed min-max nheap as 
an nheap, the relaxed min-max kheap, as a kheap 
and the relaxed min-max pheap as a pheap.

In order to support double-ended heap operat­
ions, we want the tree to hold min-nodes and 
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max-nodes alternately. We, therefore, label the 
nodes in a tree to characterize the expected dis­
tribution of max nodes and min-nodes.

A min-max-labeled tree T of depth d is a per- 
tect tree in which each node v has a label i(v) t= 
! max, min} such that (1) for any two nodes v and 
w of the same level, l(v) =l(w) : and (2) for any 
node v, if w children(v), then l(v) i(w). For 
any node v, if l(v) =max, then we say it is max- 
labeled :otherwise, we say it is min-labeled.

Given a set S of values, a min-max heap on S is 
a binary tree T with the following properties : (1) 
T has the heap-shape : and (2) T is min-max or­
dered :values stored at nodes on even(odd) levels 
are smaller(greater) than or equal to the values 
stored at their descendants (if any) where the 
root is at level 0. An example of a min-max heap 
is shown in Fig. 1.

the max field of HLi] is the largest key stored in 
the subtree of H rooted at H| i 1.

In order to easily merge the relaxed min-max 
heaps, we s나ggest the improved relaxed mirpmax- 
pair heap, which is better than the leiaxed niin- 
max heaps. This data structure's property is as 
follows :

(1) T has the heap-shape ;
(2) T is a relaxed min-max tree : and
(3) T is the min-max-pair ordered.
But, in order to give the min-max value of each 

level, we proceed from the root to leaves'. And so, 

in both the present level and the following level, 
we decide the min-max-pair. If the level that has 
not changed treats it as a new root level, we pro­
ceed to every leaf.

This new data structure is made during the 
merging of relaxed min-max heaps, and we use it. 
An example of the new improved relaxed min- 
max heap described above is shown in Fig. 2.b.

0 0® &)—响

A relaxed min-max tree T is a min-max-labeled 
tree such that, for any node v in T, neither chil- 
dren(v) nor grandchildren(v) may contain more 
than one relaxed node. Clearly, and subtree of a 
relaxed min-max tree is also a relaxed min-max 
tree. This example is shown in Fig. 2.a. Min-max­
pair heap is a binary tree H featuring the relaxed 
heap-shape property, such that every node in H 
has two fields (called the min field and the max 
fi이d) and such that H has a min-max ordering : 
for every i(lMiMn), the value is stored in the 
min fi시d of H[i] : similarly, the value stored in

에 a relaxed miirmax heap

(b) an improved relaxed min-max heap

Fig. 2. An example of a improved relaxed min-max-pair 
heap
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III. Merging the R이axed Min-Max Heaps

In order to efficiently merge the relaxed min- 
max heaps, we develop the algorithm by first show­
ing how to merge two perfect heaps of eq니al size, 
and then by showing how to merge two heaps of 
different sizes.

(1) Merging Two Relaxed Min-Max Heaps of 
Equal Size

To merge two perfect relaxed minimax heaps, 
nheap and kheap, each of size k( = n), we first 
compare the roots of two perfect relaxed rnin-max- 
pair heaps. If the root of kheap is smaller than 
the root of nheap, we consider it the root of the 
newheap. Otherwise, we consider the root of *
nheap as the root of the newheap. Then, the ri- 
ghtson of the newroot is the relaxed min-max 
heap in which its root has the smaller value, and 
the leftson is the larger val니e after comparing 
the roots. As a result, the newheap produces a 
newheap with 2k( = 2n) elements. But, at this 
time, the newheap has not satisfied the relaxed 
min-max heap's condition. To meet the relaxed 
min-max heap's condition, we must recreate half 
of the newheap. [ see Fig. 3 ] The following pseu- 
do^algorithm describes this.

procedure merge-equal-perfect*heaps (nheap, kheap) 
begin

Creation as a improved relaxed min-max-pair 

heaps for a relaxed min-max nheap or kheap 

call simple merge-heaps(nheap, kheap) 
We made the relaxed min-max heap from the 

improved relaxed min-max-pair heap.

end

procedure simple-merge-heaps(nheap, kheap) 
begin

if (root (nheap) < root(kheap))
copy kheap to leftson of newroot

copy nheap to nghtson of newroot
else newroot =the root of kheap 

copy nheap to leftson of newroot 
copy kheap to rightson of newroot 

endif
invoke the min-max heap's condition from the 
level which the roofs value has the same to leaf.

copy the last node of rightson to changed node, 
end

Theorem 1. Two relaxed min-max heaps of equal 
size n can be merged with O(log(n)) 
comparisons.

Proof. The number of comparisons in the above 
algorithm to merge two relaxed min-max heaps of 
equal size is dominated by the creation operation, 
which requires O(log(n)) comparison [2, 7, 8]. Al­
so, we need the time complexity of O(log(n)), whi­
ch creates an improved relaxed min-max-pair he­
ap. This algorithm, therefore, takes O(log(n)). ■

(2) Merging Two Heaps of Different Sizes
Here, we will consider the simple case of inser­

ting a heap of k elements, kheap, into a heap of n 
elements, nheap. Without the loss of generality, 
assume that k M Llog(size(nheap)) J.

We proceed with three phases as follows. In 
the first phase, we determine the level of the ro­
ot of slots which has k by the merging process in 
nheap. Second, the pheap, (that is, the subheap 
of nheap that is allocated in the nheap) and the 
k'heap, (that is, the subheap of kheap that is al­
located in the kheap) are merged. At this time, 
the merged new subheaps (pheap+k?heap) are sat­
isfied with the relaxed min-max heap condition. 
In the last phase, we connect the newly merged 
heap to nheap, which is an original relaxed min- 
max nheap, and construct the relaxed min-max 
heap condition for nheap. This pseudo-algorithm 
is as follows.

proedure different-size-perfect-heap(nheap, kheap)



Merging Algorithm for Relaxed Min-Max Heaps 77

/* Initially we made first the relaxed min-max- 
pair heaps of nheap and kheap * /

begin
(1) /  we find the root of subhheapt that is location*

p which is allocated m each $나bheap of 
nheap, R(i)(i = l, 2, p, where p is the 
number of 2lh(khe；ipl'"11 + 1). Then we deter 
mined the difference of height between 
nheap and kheap * /

if (nheap is a perfect heap)
then perfect-levebfind(nheap, kheap) 
else nonperfect-level-find(nheap, kheap) 

(l.a)for(i = l to p) do
repeat

move the subheap of nheap which is 
pointed to each subheap that is, 

the location p of each
subheap and so we consturct the pheap. 

until(nheapfs last node)
endfor

(l.b) for(i = 1 to p) do
while (the number of slots in each pheap 
is not equal to 0) do

move the subheap of kheap which is 
equal to the number of slots in the each 
pheap and so we consturct the k'heap 

endwhile
endfor

(2) for(i = 1 to p) do
/ * pheap which is made from nheap and 

k'heap made from kheap are merged and 
we make the newheap * /

union(pheap, k'heap)
creation (subheap (pheap + k'heap)) 

endfor
if(the root of subheap(pheap+k'heap) is changed) 

then cv = 1 else cv = 0
(3) repeat

while(cv in each subheap = 1) do 
we construct the nheap by comparing the 
root of nheap to the previous node of p 
indicated by each subheap and then we main­
tain the relaxed min-max heap's condition.

(see procedure construct-two-heaps) 
endwhile

untiKall cv m each subheap 0) 
end

IH.1 Level-Find Algorithm
In the first phase of the merging process, to 

determine the location p's node, (that is, the root 
of the subheap to allocate the slots from kheap), 
we use the level of nheap. Then, we classify 
nheap as a perfect heap or a non-perfect heap.

(a) Perfect Heap
In the process of selecting the location p of the 

node, we must fill out a characteristic of the heap 
from the leftmost node of nheap in order to fill 
out the node of kheap, since nheap is a perfect 
heap. In this perfect heap, there are two steps in 
finding the location p of the node. In the first 
step, we determine the number of subheaps in 
nheap allocated all slots in order to find the lo­
cation p in nheap. The number of subheaps, how­
ever, is equal to the number of leaves in kheap. 
In the second step, we select the locations as the 
number of subheaps determined. Since nheap is a 
perfect heap, the first subheap is located to the 
leftmost leaf or subheap of nheap. Also, we store 
the number of slots that are filled m each sub­
heap, In order to do this, we use the variable S 
(R(i), i = l, 2, 이t, where 1 is the number of
the level in kheap). The process of finding p is as 
follows :

procedure perfect-level-find
/* S(i) : the number of slots which the ith location 

has*/

(1) /  determine the number of subheaps  / 
p = the number of leaves in kheap

* *

(2) / determine the location of R(i) in nheap / 
for(i = 1 to p) do
* *

I = 2(b(nheap)-l + j _ ]

R(i) = the ith location of nheap
endfor
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(3) /^determine the number of slots which R(i) 
has/*

for(i = 1 to p) do
S(R(i) ) =the number of slots in R(i) 

endfor 
end

Theorem 1, In the procedure perfect-level-find, it 
runs O(log(k)).

Proof. To determine the number of subheaps, we 
need the number of leaves in kheap : that is, p. In 
step 2 and 3, it requires O(log(k)), since p means 
the height of kheap. Therefore, it takes O(log 
(k)). ■

(b) Non-perfect Heap
If nheap is a non-perfect heap, three steps are 

necessary to select the location p of the node. In 
the first step, we determine the number of sub­
heaps m nheap in order to allocate all slots from 
kheap. We thus determine the location of the de­
termined subheap s root. Then, using the differ­
ence of the height between nheap (h(nheap)) 
and kheap (h(kheap)), we find the location that 
is the root of the subtree that is not a first com­
plete binary tree from each subtree of the level 
determined ; that is, if the difference between the 
size of the subtree determined and the slot is not 
less than 1, we find the lower subtree and select 
the non-perfect heap that has the difference of 1. 
We allocate the selected location to the first 
subheap in the kheap.

In the second step, we allocate the next lo­
cation determined to the next subheap and so on. 
Then, the number of subheaps allocated is equal 
to the number of p determined in the first step. 
The number of slots allocated in each subheap is 
set to S(R(i)) such as in a perfect heap. The fol­
lowing pseudo-algorithm is the process of select­
ing the location p.

procedure nonperfect-level-find 
begin

(1) / determine the number of subheaps  / 
p = 2(h(kheap"l) ]

* *

(2) / determine the location of 比。first subheap/  
(2.a) level —h(nheap) ~h(kheap)
* *

if(level < = 0) then level = 0
p]=2(ieven /*  calculate 바le current level */  

(2.b) if (nheap is not a leaf)

(a) if (the subheap of pl is a perfect heap) 
나len pl =pl + l : 양。to step (2.b)

(b) LD=size(pl's subheap)-size(prs slot)
(c) if(LD M 1) then go to step 2.c
(d) if(the subheap of 2 pl is a perfect) 

나)en pl = 2  pl +1 else pl = 2  pl
*

* *
(e) go to step 2,b

(2.c) R(l) = the location pl of nheap
S(R(1)) =the number of slots in R(l)

(3) /tallocate the location from 2nd subheap to pth  / 
for (i = 1 to p) do

*

R(i) =pl of nheap + (i —l)'s location
S(R(i)) =the number of slots in R(i) 

endfor 
end

Theorem 2. To execute to find the location p of 
subheaps requires O(log(n/k)).

Proof. Step 1 of procedure nonperfect-level-find 
needs 0(1), which is the height of kheap. In step 
2,(2.a) requires 0(1), which is the difference be­
tween the height of nheap and kheap, and (2.b) 
determines the location p of the root node of slots 
in nheap. The process to determine the path from 
the root of nheap to location p is log(n)-log(k) 
= log(n/k). (2.c) requires 0(1). This procedure, 
therefore, requires O(log(n/k)). ■

III.2  Merging Algorithm
Using subheaps allocated in the above section, 

we suggest the merging method between k'heap 
(which is the subheap of kheap) and pheap, (whi^ 
ch is the subheap of nheap).

To select the kfheap which is merged with phe- 
ap, we move the number of slots in kheap that 
are assigned to subheaps in nheap. To execute 
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this, we point out the location of kheap, which 
has the ith location indicated by the total number 
of slots already assigned to the previous subheaps. 
Then, from the location of kheap determined, we 
create the merged k'heap, which constructs the 
number of slots to the subheap.

Fox example, in Fig. 4.c, we assume the circle 
represents the internal node and the square re­
presents the slot. We store the number of slots of 
each subheap to S(R(i)). To determine the locat­
ion of kheap indicated in the subheap, we select 
the location of kheap using X(R(i)). Then each 
X(R(i)) is initialized with 1. If S(R(i))={2, 2,1), 
it represents in Fig. 3 the value of S(R(i)). Since 
the number of slots in the first subheap is S(l)= 
2, and the location indicated m kheap of the first 
subheap is 1(X(1) = 1), the number of slots indic­
ated by the first subheap is 2(S(1)=2) for the 
first location of kheap.

Since the number of slots in the second subhe­
ap, R(2), is S(2)=2, and the location indicated 
m kheap of the second subheap is 3 (which is the 
sum of S⑴=2 and 1), it points out two nodes 
from the third location of kheap which has the 
same number of slots (that is, 2(5(2) =2)) as the 

second subheap. Also, the third subheap R(3) has 
나)e number of slots S(3) = 1 and X(3)=5(2(S(1) 
+2(S(2)) + 1): that is, it indicates only one, node, 
since the third subheap pointed out the number 
of slots(S(3) = 1) in the 5th location of kheap. 
The following pseudo-algorithm describes these 
points.

procedure selection-kheaps point 

begin
mt XL1 ：nJ
(1) /*  determine the location in the kheap which 

each subheap has */
sum — 0
for(i = 1 to p) do

sum = sum-F S[i — 1 ]

endfor

「、'、/ \

® ® ® ®
비* 啤

t \

® 4
/ \ / \

® ©® ®

Fig. 3. The example of perfect heap which has a equal 
size

(2) /* move the number of slots determined from 
the kheap * /

(2.a) for (i = 1 to p) do
(2.b) for (j=X[i] to (X[i]+S[i + 1]-D) do 

move the jth location of kheap to 
proper R(i)

endfor
endfor

end

Theorem 3. The above procedure runs O(log(k) * 
(the number of slots one subheap has)).

Proof. In the above procedure, (1) requires O 
(p) since it runs p —1 times using the number of 
p s subheap. The first step runs O(p). (2,a)

requires O(p) and (2.b) requires O (the number 
of slots that one subheap has) since it occurs as 
the number of slots from the proper location of
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Fig. 4. The example of heaps with different sizes

(e) after merging

kheap. Therefore, it runs O(log(k) * (the number 
of slots that one subheap has)), where p means 
log(k) since it is the height of kheap. ■

Next, we consider that the pheap and the k'heap 
are merging, [see Fig. 4d] The following pseudo­
algorithm describes this.

procedure union-heaps
/*  Pheap and k'heap is constructed by his own min- 

max values*/
begin

if(the pheap and the k'heap are perfect heaps) 
then call merge -equal -perfect-heaps (pheap, k'heap) 
else {for (i = 1 to p) do

(1) if (size(pheap) > size(k'heap))
then newroot = {last element in pheap} 

change the location of pheap and k'heap
else newroot = {last element in k'heap}

(2) distribute pheap to temporary location t 
according to the rules which an improved 
relaxed min-max heap has

(3) place newroot at pt
(4) copy t to leftson of newheap(pt)
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(5) copy k'heap to rightson of newheap(pt)
(6) creation(newheap) according to the ong 

mal rules which an improved i 어rrun 
max pair he건p has

endfor}
end

In the above procedure, if the pheap and the 
k'heap are perfect heaps, they are merged using 
the same method as the perfect heap's case. 
Otherwise, this procedure constructs a heap as we 
treat the last node of the higher heap among two 
heaps : that is, the pheap and the k'heap as the 
root of the newheap. Since the newheap must 
satisfy the relaxed min-max heap's condition, we 
use the creation function. We acquire the result' 
ant heap while the newheap moves the proper lo­
cation of nheap. But, if the root of the newheap 
is changed, nheap does not satisfy the relaxed 
min-max heaps condition. To solve this problem, 
we use the variable cv in this paper, If the root 
of k'heap is changed after merging the pheap and 
the k'heap, we set the value of cv as 1. Other­
wise, the v치나e of cv is 0. Then, to meet the re­
laxed min-max heap's condition, we use the ere 
ation function, and we repeat this method untill 
all evs that each subheap has are equal to 0.

procedure construct-twoheaps 

begin
(1) n = log I. size(nheap after merging) J

(2) for (I = n downto 1) do
k = 2(i',i
s = 0

(3) m = .sizefnheap after merging) i12. 2k~l)*

(4) for (j =k to m) do

P=2* 〕

if(p< L size(nheap after merging)丨 and 
nheap(p) >nheap(p+l)) then p = p+l 

if(nheap(p) < nheap(j))
then exchange(nheapfp). nheaptj.))

endtor
endfor

(5) for (i = 1 to p) do
creation(R(i)'s s니bheap)

trie root node is exchanged j 
then cv = 1 else cv =() 

endfor
(6) for (all cv in R(i) =0) do

returnfrelaxed min-max heap) 
endfor 

endfor 
end

Theorem 4. The time complexity of the above pro­
cedure is O(log(n/k) *log(n) ).

Proof. In the above procedure, step 4 requires 
O(log(n/k)) since it exchanges the subheaps from 
the location which is the difference between h 
(nheap) and h(kheap). to the root. Steps 2 throu­
gh 4 require O(log(n) *log(n/k)).

Further, since step 5 requires log(n) as a cre­
ation function, it nms O(log2(pH-k')) because the 
subheap is pheap and k'heap. Steps 1 through 6 
need the value of cv#0;that is, it does not chan­
ge the root node of the subheap in 겄H subheaps. 
This is what we indicate from the root of nheap 
to location p, which the subheap pointed out. 
This time complexity is O(log(n/k)) as seen in 
theorem 1. Therefore, it runs O(log(n/k) *log  

(n)).・

IV. The Analysis of Merging Relaxed Heaps

The time complexity can be computed in the 
non-perfect heap as follows. The first phase of 
merge finds the location p of a node allocated in 
each s니bheap in nheap. If nheap is a perfect heap, 
it req니ires 0(p). Otherwise, it requires O(log(n/ 
k)). The second phase takes O(log(k) * (the nu­
mber of slots that one subheap has)). The third 
step requires 0( (log(n) *log(n/k) )+k)g‘(p + k')). 
Therefore, the total time complexity is 0((Iog(n/ 
k) *log(n) ).

The space complexity is computed as follows : 
First, regarding the size of nheap and kheap, 
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which include the min and max fi이d、2n and 2k. 
respectively, O(n + k) space is required. Second, 
since each subheap needs the pheap and kheap, it 
needs 2p and 2k', (that is, O(p + k')) since it needs 
pheap(size 2p) and k'heap(size 2k'). Therefore, 
the total space complexity is O(n + k), which me­
ans O(n + k + p + k').

To run the algorithm on a practical machine 
using C-language, we use from 0.1 million to 8 
million data which were randomly generated and 
have no equal values. Also, we choose each data 
point, which was obtained as the average of 20 
program executions, each on a different set of 
test data. As a result, two relaxed min-max heaps 
yield the 627.6686 seconds for 8 million data : 297. 
13 seconds for 4 million, 66.3 seconds for 1 mil­
lion, 24 seconds for 0.4 million : and 5.3 seconds 
for 0.1 million.

V. Con이usion

This paper presents a new data structure that 
efficiently merges relaxed rrun-max heaps. This 
structure implements a mergeable double-ended 
priority queue to support very efficient merging. 
The improved relaxed min-max-pair heaps has a 
disadvantage, however. It requires more storage 
because each node m an array has two fields, a 
min fi이d and a max fi기d. Despite the problem of 
space 니tilization, we can efficiency merge two re­
laxed min-max heaps without the blossomed tree 
and the lazying method used in [8]. This result 
shows that, in two perfect heaps, the time com­
plexity takes O(log(k)), but, in two heaps of dif­
ferent sizes, the time Complexity requires Odog 
(n/k) *log(k)assuming  k L log (size (nheap)) I 
and the space complexity takes O(n + k). When 
we ran the algoh나im on a machine using C-langu- 
age, it required 627.6686 seconds for 8 million da­
ta, which consisted of two relaxed min-max heaps 
of different sizes. This practical time represents 
the average time of running 20 programs. Also, 
we think about that this me나]od may be appli­
cable to the parallel machine.
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