73

Merging Algorithm for Relaxed Min Max Heaps
Relaxed min-max gl W3+ & g G S

Yong Sik Min*
LU - e

ABSTRACT

This paper presents a data structure that implements a mergeable double-ended priority queue :namely, an
improved relaxed min-max-pair heap. it suggests a sequential algorithm to merge priority queues organized in two
relaxed min-max heaps : kheap and nheap of sizes k and n, respectively, This new data structure eliminates the
biossomed tree and the lazying method used to merge the relaxed min-max heaps in (8]. As a result, the suggested
rethod in this paper requires the time complexity of O{log(log(n/k)) *log(k)} and the space complexity of O(n
+k), assuming that k < | log{size{nheap)) | are in two heaps of different sizes,

2 o

B =8 relaxed min-max heapd #4717 Asld el 48 R2e AFZ P2 7)€ relaxed min-max-pair 2=
A, %709 relaxed min-max & %, 2717} ngl relaxed min-max nheap| 2717} k9] relaxed min-max kheapo. 2 A€
249 &9 F2 A7) AF £4H FuelE S AAshara ok B =R AR wye (8] AlAE WM
relaxed min-max Y& ¥ A7)71 gl M o] &2 blossomed trees} lazying W& M Al W {o] e 2 71
3 AAEEc @RdoZ B R A g e £742 relaxed minmax 39 2717} B g HEE XA, olw A
7) k < | log{size{nheap)) 1) A% 21¢ 227 Ologllogin/k}) *log(k))]2 FUEHE7 Oln+k)YL 2
7k Atk

1. introduction The operations defined 1 priority queues are as
follows :

The priority queue s an important abstract da- (a) min : returns the element or the address of
ta structure in computer science, It has been suc- the element with the smallest priority ©
cessfully used for applications such as sorting, (b) insert(k) : adds the item containing the key
network optimization, discrete-event simulation, k to the queue Q
and state-space searches {8). (¢) delete : removes the item containing the sm-

allest key from the queue !
*Hoseo Univ, Dept. of Computer Science
Hr4z:1995d 14 9o

and

4 The Journal of the Acoustical Society of Korea, Vol, 14, No. 1E (1945)

tdrmergelq. q'):all elements of ¢ are added

to g while g s destroyed.,

A data structure implementing a priority queue
is often called a heap. The heap is considered an
optimal implementation of a priority queue and
has been the subject of almost three decades of
research. In essence, a heap (1, 2. 7, 8] is a tree
has the following properties : (a) it is heap-order-
ed ;that 1s, a key contained in any node is not
greater than the keys of its offspring :and (b) all
leaves are on, at most, two adjacent levels, and
all leaves on the last level are as far to the left as
possible,

A heap is a min heap if 1t supports operation
min which returns the element or the address of
the element with the smallest priority and is a
max heé’p if it supports operation max which re-
turns the element or the address of the element
with the largest priority. Operation (d} is suppor-
ted by the leftist heaps proposed by Crane and by
the binomial queues proposed by Vuillemen, Other
priority queue implementations mnclude the skew
heap, the Fibonacci heap, the relaxed heap, and
the pairing heap. Recently, Olariu et al, [4] sug-
gested a double-ended priority queue implemen-
tation called the min-max-pair heap, which sup-
ports sublinear time merging. Y. Ding and M, A,
Weiss [8] published a priority queue implemen-
tation called the relaxed min-max heap, which
supports all the priority operations. The key idea
of this method is that, by properly relaxing the
order restrictions for min-max heaps, it can mer-
ge two regular-sized min-max heaps. To merge
two regular-sized min-max heaps, however, this
method uses the blossomed tree and the lazying
merging method,

In this paper, we provide a priority queue im-
plementation called an improved relaxed min-max-
pair heap, which efficiently supports the priority
queue operation (d}. Throughout the improved
relaxed min-max-pair heap. we solve the problem
without the blossomed tree and the lazying mer-

ging method that are used te merge two relaxed
min-max heaps in [8]. Then, we proposed a sequ-
ential algorithm to efficiently merge the relaxed
min-max heaps, For purposed of our discussion,
the relaxed min-max nheaps are split into two
cases: (1) two perfect heaps of equal size:and
(2} two heaps of different sizes. 1f size n of the
relaxed min-max nheap and size k of the relaxed
min-max kheap are the same, the merging algor-
ithm is determined by the creation function. This
algorithms is based on an array implementation of
the relaxed min-max heaps. As a result, we re-
quire the time complexity of O(log{login/k)*
log(n)).

The rest of this paper is organized as follows.
Section I presents the basic definitions related
to the merging and use of relaxed min-max heaps.
Section Ml describes the basic algorithm for mer-
ging two heaps of size n and k. Section IV discuss
the results of this method, and Section V pre-
sents our conclusions,

II. Basic Definition

We will first give some definitions related to
the merging of relaxed heaps and then define a
new data structure ; namely, the improved relaxed
min-max-pair heaps,

We defined a perfect heap as a heap with 21—~1
elements, in which all leaves are on the same
level ; otherwise, the heap is non-perfect. The
pheap is rooted at p, similar to the subheap
rooted at p, Let the size(heap) refer to the num-
ber of elements 1t contains, and the height be de-
fined as | log(size{heap))]. We introduce a func-
tion htheap) to return the height of a heap. We
define slots of those leaf positions in nheap that
are to be filled by merging processes [7]. In this
paper, we regard the relaxed muin-max nheap as
an nheap, the relaxed min-max kheap, as a kheap
and the relaxed min-max pheap as a pheap.

In order to support double-ended heap operat-

ions, we want the tree to hold min-nodes and

Merging Algorithmn for Relaxed Min-Max Heaps

max-nodes alternately, We, therefore, label the
nodes in a tree to characterize the expected dis-
ivibution of max nodes and rmin nodes.

A min-max-labeled tree T of depth d 1s a per-
tect tree in which each node v has a label itwv) e
‘max, min! such that (1) for any two nodes v and
w of the same level, I{v) =1{w) and (2) for any
node v. if w&children(v}, then 1(v) # i(w}. For
any node v, if l{(v} =max, then we say it is max-
labeled : otherwise, we say it is min-labeled.

Given a set S of values, a min-max heap on S is
a binary tree T with the following properties : (1)
T has the heap-shape;and (2) T is min-max or-
dered : values stored at nodes on even(odd) levels
are smaller{greater} than or equal to the values
stored at their descendants (if any) where the
root is at level (), An example of a min-max heap
is shown in Fig. 1.

@ min
N

@ — max
C:é é (@ — min
Fig. 1. Sample of a relaxed min-max heap

A relaxed min-max tree T is a min-max-labeled
tree such that, for any node v in T, neither chil-
dren{v) nor grandchildren(v) may contain more
than one relaxed node. Clearly, and subtree of a
relaxed min-max tree is also a relaxed min-max
tree. This example is shown in Fig. 2.a. Min-max-
pair heap is a binary tree H featuring the relaxed
heap-shape property, such that every node in H
has two fields (called the min field and the max
field) and such that H has a min-max ordering :
for every i{l1<i<n), the value is stored in the
min field of H(i]:similarly, the value stored in

75

the max field of H{1] is the largest key stored in
the subtree of H rooted at H|i1.

In arder to easily merge the relaxed mun-max
heaps, we suggest the improved relaxed min-max-
pair heap., which is betier than Lhe 1eiaxed min-
max heaps. This data structure’s property is as
follows :

(1) T has the heap-shape :

{2} T is a relaxed min-max tree : and

(3) T is the min-max-pair ordered.

But, in order to give the min-max value of each
level, we proceed from the root to leaves. And so,
in both the present level and the following level,
we decide the min-max-pair. If the level that has
not changed treats it as a new root level, we pro-
ceed to every leaf.

This new data structure is made during the
merging of relaxed min-max heaps, and we use it.
An example of the new improved relaxed min-

max heap described above is shown in Fig. 2.b.

O —
/ N\

®
A
QOO O-w

(8] a relaxed min-max heap

@0
6606

) an improved retaxed minrmax keap

Fig. 2. An example of a improved relaxed min-max-pair
heap

o6 The Journal of the Acoustical Society of Korea, Vel, 14. No, 1E {1945)

IN. Merging the Retaxed Min-Max Heaps

In order to efficiently merge the relaxed mun-
max heaps, we develop the algorithm by first show-
ing how to merge two perfect heaps of equal size.
and then by showing how to merge two heaps of
different sizes.

(1) Merging Two Relaxed Min-Max Heaps of
Equal Size
To merge two perfect relaxed min-max heaps,

nheap and kheap, each of size k{i=n), we first
compare the roots of two perfect relaxed min-max-
pair heaps. If the root of kheap is smaller than
the root of nheap, we consider it the root of the
newheap. COtherwise, we consider the root of
nheap as the root of the n‘éwheap‘ Then, the ri-
ghtson of the newrcot is the relaxed min-max
heap in which its root has the smaller value, and
the leftson is the larger value after comparing
the roots. As a result, the newheap produces a
newheap with 2k{(=2n) elements, But, at this
time, the newheap has not satisfied the relaxed
min-max heap's condition. To meet the relaxed
min-max heap’s condition, we must recreate half
of the newheap. [see Fig. 3] The following pseu-
do-algorithm describes this,

procedure merge-equal-perfect-heaps(nheap, kheap)
begin
Creation as a improved relaxed min-max-pair
heaps for a relaxed min-max nheap or kheap
call simple-merge-heaps{nheap, kheap)
We made the relaxed min-max heap from the
improved relaxed min-max-pair heap.

end

procedure simple-merge-heaps(nheap, kheap)
begin
if(root (nheap) < root(kheap))
copy kheap to leftson of newroot

copy nheap to rightson of newroot
else newroot =the root of kheap
copy nheap to leftson of newroot
copy kheap to rightson of newroot
endif
invoke the min-max heap's condition from the
level which the root’s value has the same to leaf,

copy the last node of rightson to changed node.

end

Theorem 1. Two relaxed min-max heaps of equal
size n can be merged with Ofjog(n}}
comparisons.

Proof. The number of comparisons in the above
algorithm to merge two relaxed min-max heaps of
eqgual size is dominated by the creation operation,
which requires O{log(n)) comparison [2, 7, 8]. Al-
s0. we need the time complexity of O(log(n)), whi-
ch creates an improved relaxed min-max-pair he-
ap, This algorithm, therefore, takes Ollog(n)). m

{2) Merging Two Heaps of Different Sizes

Here, we will consider the simple case of inser-
ting a heap of k elements, kheap, into a heap of n
elements, nheap. Without the loss of generality,
assume that k < | log(size{nheap}) |.

We proceed with three phases as follows. In
the first phase, we determine the level of the ro-
ot of slots which has k by the merging process in
nheap, Second, the pheap, (that is, the subheap
of nheap that is allocated in the nheap) and the
k’heap, (that is, the subheap of kheap that is al-
located in the kheap) are merged. At this time,
the merged new subheaps{pheap-t+k’heap) are sat-
isfied with the relaxed min-max heap condition.
In the last phase, we connect the newly merged
heap to ﬁheap. which is an original relaxed min-
max nheap, and construct the relaxed min-max
heap condition for nheap., This pseudo-algorithm
1s as follows,

procdure different-size-perfect-heap{nheap, kheap)

Merging Algorithm for Relaxed Min-Max Heaps

,f’*[initially we made first the relaxed min-max-
pair heaps of nheap and kheap %/
hegin
(1) /* we find the root of subhheap, that 1s location
p which is allocated in each subheap of
nheap, RG){i=1, 2, ..., p, where p is the
number of 2"*hea =14 1) Then we deter-
mined the difference of height between
nheap and kheap % /
if(nheap is a perfect heap}
then perfect-level-find{nheap, kheap)
else nonperfect-level-find{nheap, kheap)
(l.a)for(i=1top)do
repeat
move the subheap of nheap which is
pointed to each subheap that is,
the location p of each
subheap and so we consturct the pheap.
until{nheap’s last node}
endfor
{1.b) for(i=1 to p) do
while(the number of slots in each pheap
is not equal to 0) do
move the subheap of kheap which is
equal to the number of slots in the each
pheap and so we consturct the k’heap
endwhile
endfor
{2)for(i=1to p) do
/%*pheap which is made from nheap and
k’heap made from kheap are merged and
we make the newheap# /
union{pheap, k'heap)
creation{subheap(pheap + k'heap))
endfor
if{the root of subheap{pheap~+kheap) is changed)
thencv=1]elsecv=0
{3) repeat
while(cv in each subheap =1) do
we construct the nheap by comparing the
root of nheap to the previous node of p
indicated by each subheap and then we main-
tain the relaxed min-max heap’s condition.

77

(see procedure construct-two-heaps)
endwhile
untiltall ¢v in each subheap = ()

end

2.1 Level-Fing Algorithm

In the first phase of the merging process. to
determine the location p's node, {that is, the root
of the subheap to allocate the slots from kheap),
we use the level of nheap. Then, we classify
nheap as a perfect heap or a non-perfect heap.

(a) Perfect Heap

In the process of selecting the location p of the
node, we must fill out a characteristic of the heap
from the leftmost node of nheap in order to fill
out the node of kheap, since nheap is a perfect
heap. In this perfect heap, there are two steps in
finding the location p of the node., In the first
step. we determine the number of subheaps in
nheap allocated all slots in order to find the lo-
cation p in nheap. The number of subheaps, how-
ever, is equal to the number of leaves in kheap.
In the second step, we select the locations as the
number of subheaps determined. Since nheap is a
perfect heap, the first subheap is located to the
leftmost leaf or subheap of nheap, Also, we store
the number of slots that are filled in each sub-
heap. In order to do this, we use the variable S
{R(1), i=1, 2, ..., 2%, where | is the number of
the level in kheap). The process of finding p is as
follows :

procedure perfect-level-find
/*S(i) : the number of slots which the ith location
has s/
{1}/ *determine the number of subheaps*/
p= the number of leaves in kheap
(2) /% determine the location of R{i) in nheap*/
for{i=1top) do
= 2[h|nheap}—1 <+ -1
R(1) = the ith location of nheap
endfor

8 ‘The Journal of the Acoustical Society of Korea, Vol, 14. No. 1E (1995)

i3t ik determine the number of slots which R(i)

has* /
forti = 1 top) do

SR} = the number of slots in R{j)
engfor

end

Theorem 1, In the procedure perfect-level-find, it

runs O{log{k)).
Proof. To determine the number of subheaps, we

need the number of leaves in kheap : that is, p. In
step 2 and 3, it requires Ollog{k)). since p means
the height of kheap. Therefore, it takes Oflog
(k)).m

{b) Non-perfect Heap

If nheap is a non-perfect heap, three steps are
necessary to select the location p of the node. In
the first step, we determine the number of sub-
heaps in nheap in order to allocate all slots from
kheap. We thus determine the Jocation of the de-
termined subheap’s root. Then, using the differ-
ence of the height between nheap (h{nheap))
and kheap (hikheap)), we find the location that
is the root of the subtree that is not a first com-
plete binary tree from each subtree of the level
determined ; that is, if the difference between the
size of the subtree determined and the slot is not
less than 1, we find the lower subtree and select
the non-perfect heap that has the difference of 1.
We allocate the selected location to the first
subheap in the kheap.

In the second step, we allocate the next lo-
cation determined to the next subheap and so on.
Then, the number of subheaps allocated is equal
to the number of p determined in the first step,
The number of slots allocated in each subheap is
set to S{R(i)) such as in a perfect heap. The fol-
lowing pseudo-algorithm is the process of select-
ing the location p.

procedure nonperfect-level-find
begin

{1) /% determune the number of subheaps * /
p= 21’h[kheap3—l} + 1
(2) /% determine the location of the first subheap %/
(2.a) level = h{nheap) ~h(kheap)
if(level <=0) then level =0
pl=2""" /% calculate the current level %/
{2.b)if{nheap is not a leaf)
{a) tf(the subheap of pl is a perfect heap)
then pl=pl+1 :go to step (2.b)
{b) LD=size(pl's subheap)-size(pl's slot }
(c}if{LD < 1) then go to step 2.¢
{d) if(the subheap of 2%p) is a perfect)
thenpl=2%pl +1 else pl =2%pl
(e)go to step 2.b
(2.c) R(1) = the location pl of nheap
S(R(1)) =the number of slots in R(1}
(3) /*allocate the location from 2nd subheap to pth*/
for i=1top}do
R{i) = pl of nheap+ (i—~1)"s location
S(R(i)) =the number of slots in R{i)
endfor
end
Theorem 2. To execute to find the location p of
subheaps requires O{log(n/k)).

Proof. Step 1 of procedure nonperfect-level-find
needs O(1), which 1s the height of kheap. In step
2, (2.a) requires O(1), which is the difference be-
tween the height of nheap and kheap, and (2.b)
determines the location p of the root node of slots
in nheap, The process to determine the path from
the root of nheap to location p is log(n) —log(k)
=tog(n/k). (2.c) requires O(1). This procedure,
therefore, requires O{log(n/k)). m

.2 Merging Algorithm

Using subheaps allocated in the above section,
we suggest the merging method between k'heap
{which is the subheap of kheap) and pheap, (whi-
ch is the subheap of nheap).

To select the k'heap which is merged with phe-
ap, we move the number of slots in kheap that
are assigned to subheaps in nheap. To execute

Merging Atgorithm for Relaxed Min-Max Heaps

this, we point out the location of kheap, which
has the ith location indicated by the total number
of slots already assigned to the previous subheaps.
Then. from the location of kheap determined, we
create the merged k'heap, which constructs the
number of slots to the subheap.

Fox example, in Fig. 4.c, we assume the circle
represents the internal node and the square re-
presents the slot, We store the number of siots of
each subheap to S(R(i)). To determine the locat-
ion of kheap indicated in the subheap, we select
the location of kheap'- using X{(R{i}). Then each
X(R(i)) is initialized with 1. If S(R(i))}=1{2,2.1},
it represents in Fig. 3 the value of S{R(i}), Since
the number of slots in the first subheap is S(1} =
2, and the location indicated in kheap of the first
subheap is 1{X{1) = 1), the number of slots indic-
ated by the first subheap i1s 2({S(1)=2) for the
first location of kheap,

Since the number of slots in the second subhe-
ap, R{2), i1s S(2)==2, and the location indicated
in kheap of the second subheap is 3 (which is the
sum of S(1}=2 and 1), it points cut two nodes
from the third location of kheap which has the
same number of slots {that is. 2(S(2}=2)) as the
second subheap. Also, the third subheap R(3) has
the number of slots S{3} =1 and X(3) =5{2(S(1)
+2(S(2))+1) : that is, it indicates only one, node,
since the third subheap pointed out the number
of slots(S(3)=1) in the 5th location of kheap,
The following pseudo-algorithm describes these
points,

procedure selection-kheap's point
begin
int X|1:n]
(1} /*determine the location in the kheap which
each subheap has */
sum=0
for{i==1to p} do
sum=sum-+S[i—1]
Xf11=X[1)+sum

endfor

® &
o ® o &

:

e
—
"

S—

!

@émé@
/\
\/\ \
18840

191919
@@@@@@@@@ @@@@

Fig. 3. The example of perfect heap which has a equal
size

/\
i

/

(2) /% move the number of slots determined from
the kheap */
(2.a)for {i=1top) do
(2.b) for (j=X[i] to (X[i]+S[i+1]1-1)) do
move the jth location of kheap to
proper R{i}
endfor
endfor

end

Theorem 3. The above procedure runs O(log{k) *
{the number of slots one subheap has)).
Proof. In the above procedure, (1) requires O
{p) since it runs p—1 times using the number of
p's subheap. The first step runs O(p), {2.a)
requires Gip) and (2.b) requires O (the number
of slots that one subheap has) since it occurs as
the number of slots from the proper location of

The Journal of the Acoustical Society of Korea, Vol. 14, No. 1E {1995)

G3) @
//\ /\\
d B P @
VAN 7\ VRN

OO B ® ® D_

@ 120 d))

{e) aftcr merging

Fig. 4 The example of heaps with different sizes

kheap. Therefore, it runs Oflog{k) * (the number if(the pheap and the k'heap are perfect heaps)
of slots that one subheap has)}, where p means then call merge-equal-perfect-heaps{pheap, k’heap)
log(k) since it is the height of kheap. m else {for (i=1to p) do

(1) if (size{pheap) > size{k’heap))

Next, we consider that the pheap and the k'heap then newroot = {last element in pheap!
are merging.[see Fig. 4d] The following pseudo- change the location of pheap and k’heap
algorithm describes this. else newroot ={last element in K'heap

{2) distribute pheap to temperary location t
procedure union-heaps according to the rules which an improved
/% Pheap and k'heap is constructed by his own min- relaxed min-max heap has

max values %/ (3) place newroot at pt

begin

(4) copy t to leftson of newheap{(pt)

Merging Algorithim foy Relaxed Min-Max Heaps

{5) copy k'heap to rightson of newheap(pt)

16 creationinewheap) according to the ong
mal rules which an improved 1elaxed b
max pair heap has

endfor ¢

end

in the above procedure, if the pheap and the
k'heap are perfect heaps, they are merged using
the same method as the perfect heap's case.
Otherwise, this procedure constructs a heap as we
treat the last node of the higher heap among two
heaps : that is, the pheap and the k'heap as the
root of the newheap, Since the newheap must
satisfy the relaxed min-max heap's condition. we
use the creation function. We acquire the result
ant heap while the newheap moves the proper lo-
cation of nheap, But, if the root of the newheap
is changed, nheap does not satisfy the relaxed
min-max heap’s condition. To solve this problem,
we use the variable ¢v in this paper. If the root
of k’heap 1s changed after merging the pheap and
the k’heap., we set the value of cv as 1. Other-
wise, the value of c¢v is 0. Then, to meet the re-
laxed min-max heap's condition, we use the cre-
ation function, and we repeat this method untill
all ¢cvs that each subheap has are equal to 0.

procedure construct-twoheaps
begin

{1)n=log| size(nheap after merging} |

(2} for (I =n downte 1) do

k= 2ti~ ti

=0
13) m=minl size(nheap after merging) i/2, 2%k 1)
(4} for (j=k tom) do

[

p=2%]
ifip < | size(nheap after merging) { and
nheapip! > nheaptp+11) then p==p-+1
if(nheap(p} < nheap{(j})
then exchange {nheap(p). nheaptj}}
enator
endfor

&8

thifor (i =1 topldo
creationt K) 's subheapi
s the 1ot suxde s exchdnged:
thencv =1 else cv =1()
endtor
to) for (ali cv in RGY = () do
returntrelaxed min-max heap)
endfor
endfor

end

Theorem 4. The time complexity of the above pro-
cedure js Oflog(n/k) %log(n)),

Proof. In the above procedure, step 4 requires
Ollogin/k)) since it exchanges the subheaps from
the location which is the difference between h
{nheap) and h{kheap). to the root, Steps 2 throu-
gh 4 require Ollog(n) *log{n/k)}.

Further. since step 5 requires log(n) as a cre-
ation function, it runs Ollog”(p-+k’)}) because the
subheap is pheap and k’heap. Steps 1 through 6
need the value of cv#0:that is, it does not chan-
ge the root node of the subheap in all subheaps.
This 1s what we indicate from the root of nheaf)
to location p, which the subheap pointed out.
This time complexity is Ollog{n/k}} as seen in
theorem 1. Therefore, it runs Ologin/k) *log
(n)).m

[V. The Analysis of Merging Refaxed Heaps

The time complexity can be computed in the
non-perfect heap as follows. The first phase of
merge finds the location p of a node aliocated in
each subheap in nheap. J{ nheap is a perfect heap.
it requires Olpl. Otherwise, it requires Olog(n/
k)). The second phase takes Oflog(k) # ({he nu-
mber of slots that one subheap has)). The third
step requires O({log{n) xlog{n/k))+log”{p+k'}).
Therefore, the total time complexity is O{{logi{n/
k) *logi{n)).

The space complexity 15 computed as follows :
First, regarding the size of nheap and kheap,

Py, The Journal of the Acoustical Society of Korea, Vol, 14, No, 1E (1995}

which include the nmun and max tield, 2n and 2k,
respectively. Ofn—+k) space is required. Second.
since ¢ach subheap needs the pheap and kheap, it
needs 2p and 2k, (that is, O(p+k}) stice it needs
pheapisize 2p) and k'heap(size 2k’). Therefore,
the total space complexity is O{n+Kk), which me-
ans Ofn+k+p+k').

To run the algorithm on & practical machine
using C-language, we use from 0.1 miliion to 8
mullion data which were randomly generated and
have no equal values, Also, we choose each data
point, which was obtained as the average of 20
program executions, each on a different set of
test data. As a result, two relaxed min-max heaps
vield the 627.6686 seconds for 8 million data : 297.
13 seconds for 4 million, 66.3 seconds for 1 nul-
lion, 24 seconds for 0.4 million :and 5.3 seconds

for 0.1 million,

V. Conclusion

This paper presents a new data structure that
efficiently merges relaxed min-max heaps. This
structure implements a mergeable double-ended
priotity queue to support very efficient merging.
The improved relaxed min-max-pair heaps has a
disadvantage, however, It requires more storage
because each node in an array has two fields, a
min field and a max field. Despite the problem of
space utilization, we can efficiently merge two re-
laxed min-max heaps without the blossomed tree
and the lazying method used in [8]. This result
shows that, in two perfect heaps, the time com-
plexity takes Oflog(k}), but, in two heaps of dif-
ferent sizes, the time complexity requires O(log
{n/k)*logik)), assuming k <{ log{size{nheap)) |
and the space complexity takes O(n—+k}. When
we ran the algorithm on a machine using C-langu-
age, it required 627.6686 seconds for ¥ million da-
ta, which consisted of two relaxed min-max heaps
of different sizes, This practical time represents
the average time of running 20 programs, Also.
we think about that this method may be appli-
cable to the parallel machine,

Acknowledgement

1 thanks Dr. Zheng for his insighful comments.
which has helped to improve the results and the
presentation of this paper. And I thanks Dr. Pr-
asad who supplies me more data to complete this
paper.

References

1. Aho, AV, Hoperoft, J.E, and Ullman, J. D.. "The
dision-Wesely, 1974.

. Atkison. M.. Sack)., Santoro, N. and Strothotte,
T.. "Min-max Heaps and Generalized Priority Qu

~

1946,
. Gonnet, G H. and Nunro, J. 1., "Heaps on Heaps.”

.

971, Dec. 1986.

1. S, Olariu, C.M. Overstreet and Z. Wen, A Merge
able Double-Ended Priority Queue,” Computer Jour
nal, Vol. 34, No. 5, pp.423-427. 1991,

5. Stasko, J. T. and Vitter, J.S.. "Pairing Heaps :
Experniments and Analysis,” Commu, ACM. vol, 30,
no, 2, pp.234-249, Mar. 19s7.

6. Strothotte, Thomas and Sack, J,R.. “An Algonthm

186, 1985,

. Y. Ding, M_A. Weiss. “The Relaxed Min-Max He-
ap., A Mergeable Double-Ended Priority Queue,”
Acta informatica 30, pp. 215-232, 1993.

=~}

AYong Sik Min{(Regular Member)

1981 249 : Dept. of Computer Science, Kwangwoon
Univ.(B. S.)

19843 29 : Dept. of Computer Science, Kwangwoon
Univ.{M, S,)

19913 24 : Dept. of Computer Scierce, Kwangwoon
Univ,(Ph. D)

19843 3¢ ~1987'd 24 : Full-time iecturer, Songwon
Junior College Dept. of Computer
Science

1987'3 349 :present : Associate Professor, Hoseo
Univ. Dept. of Computer Science

19933 8€ ~ 19943 849 : Visiting Professor, Louisiana

State Univ. Dept. of Computer Science

