
73

Merging Algorithm for Relaxed Mm Max Heaps

Relaxed min-max 힙 에 대 한 병 합 알고리 즘

Yong Sik Min*

민 용 식*

*Hoseo Univ, Dept, of Computer Science
접수일자 : 1995년 1 월 9일

ABSTRACT

This paper presents a data structure that implements a mergeable double-ended priority queue : namely, an
improved relaxed min-max-pair heap. It suggests a sequential algorithm to merge priority queues org거nized m two
relaxed min-max heaps : kheap and nheap of sizes k and n, respectively. This new data structure eliminates the
blossomed tree and the lazymg method used to merge the relaxed min-max heaps in [8]. As a result, the suggested
method in this paper requires the time complexity of O(log(log(n/k)) *log(k)) and the space complexity of O(n
+ k), assuming that k M [log (size(nheap)) J are in two heaps of different sizes.

요 약

본 논문은 relaxed min-max heap을 병 합시키 기 위 하여 이용된 새로운 자료구조인 개선된 relaxed min-max-pair 힙으로

서, 두개의 relaxed mm-max 힙 즉, 크 기 가 n인 relaxed min-max nheap고+ 크기 사 k인 relaxed min-max kheap으로 구성된

우선 순위 큐를 병합시키기 위한 순차적 알고리즘을 제시하고자 한다. 본 논문에서 제시된 방법은 [8]에 제시된 방법에서

relaxed min-max 힙을 병합 시키기 위해서 이용된 blossomed tree와 lazying 방법을 제서하여도 병합이 되는 새로운 기법

올 제시하였다. 결과적으로 본 논문에서 제시된 방법은 두개의 relaxed min-max 힙의 크기가 서로 다른 경우로서, 이때 크

기 kM Llog(size(nheap))J인 경우, 시간 복잡도가 O(iog(log(n/k)) * k)g(k)) 이고 공간복잡도가 O(n+ k) 임을 볼

수가 있다.

I. Introduction

The priority queue is an important abstract da-
ta structure in computer science. It has been suc­
cessfully used for applications such as sorting,
network optimization, discrete-event simulation,
and state-space searches [8].

The operations defined in priority queues are as
follows :

(a) min : returns the element or the address of
the element with the smallest priority :

(b) insert(k) : adds the item containing the key
k to the queue Q :

(c) delete : removes the item containing the sm-
allest key from the queue ;
and

74 The Journal of the Acoustical Society of Korea, Vol. 14. No. IE (1995)

(d) merge(q, q') : all elements of q' are added
to q while q' is dest royed,

A data structure implementing a priority queue
is often called a heap. The heap is considered an
optimal implementation of a priority queue and
has been the subject of almost three decades of
research. In essence, a heap [1, 2, 7, 8] is a tree
has the following properties : (a) it is heap-order­
ed ；that is, a key contained in any node is not
greater than the keys of its offspring ; and (b) all
leaves are on, at most, two adjacent levels, and
all leaves on the last level are as far to the left as
possible.

A heap is a min heap if it supports operation
min which returns the element or the address of
the element with the smallest priority and is a
max heap if it supports operation max which re­
turns the element or the address of the element
with the largest priority. Operation (d) is suppor­
ted by the leftist heaps proposed by Crane and by
the binomial queues proposed by Vuillemen. Other
priority queue implementations include the skew
heap, the Fibonacci heap, the relaxed heap, and
the pairing heap. Recently, Olariu et al. [4] sug­
gested a double-ended priority queue implemen­
tation called the min-max-pair heap, which sup­
ports sublinear time merging. Y. Ding and M. A.
Weiss [8] published a priority queue implemen­
tation called the relaxed min-max heap, which
supports all the priority operations. The key idea
of this method is 나lat, by properly relaxing the
order restrictions for min-max heaps, it can mer­
ge two reg니ar-sized min-max heaps. To merge
two regular-sized min-max heaps, however, this
method uses the blossomed tree and the lazying
merging method.

In this paper, we provide a priority queue im­
plementation called an improved relaxed min-max-
pair heap, which efficiently supports the priority
queue operation (d). Throughout the improved
relaxed min-max-pair heap, we solve the problem
without the blossomed tree and the lazying mer­

ging method that are used to merge two relaxed
min-max heaps in [8〕. Then, we proposed a sequ­
ential algorithm to efficiently merge the relaxed
min-max heaps. For purposed of our discussion,
the relaxed min-max nheaps are split into two
cases : (1) two perfect heaps of equal size : and
(2) two heaps of different sizes. If size n of the
relaxed min-max nheap and size k of the relaxed
min-max kheap are the same, the merging algor­
ithm is determined by the creation function. This
algorithms is based on an array implementation of
the relaxed min-max heaps. As a result, we re­
quire the time complexity of O(log(log(n/k) *
log(n)).

The rest of this paper is organized as follows.
Section II presents the basic definitions related
to the merging and use of relaxed min-max heaps.
Section ID describes the basic algorithm for mer­
ging two heaps of size n and k. Section IV discuss
the results of this method, and Section V pre­
sents our conclusions.

II. Basic Definition

We will first give some definitions related to
the merging of relaxed heaps and then define a
new data structure : namely, the improved relaxed
min-max-pair heaps.

We defined a perfect heap as a heap with 21 —1
elements, in which all leaves are on the same
level : otherwise, the heap is non-perfect. The
pheap is rooted at p, similar to the subheap
rooted at p. Let the size (heap) refer to the num­
ber of elements it contains, and the height be de­
fined as L log(size(heap)) J. We introduce a func­
tion h(heap) to return the height of a heap. We
define slots of those leaf positions in nheap that
are to be filled by merging processes [7]. In this
paper, we regard the relaxed min-max nheap as
an nheap, the relaxed min-max kheap, as a kheap
and the relaxed min-max pheap as a pheap.

In order to support double-ended heap operat­
ions, we want the tree to hold min-nodes and

Merging Algorithm for R이axed Mm-Max He건ps 75

max-nodes alternately. We, therefore, label the
nodes in a tree to characterize the expected dis­
tribution of max nodes and min-nodes.

A min-max-labeled tree T of depth d is a per-
tect tree in which each node v has a label i(v) t=
! max, min} such that (1) for any two nodes v and
w of the same level, l(v) =l(w) : and (2) for any
node v, if w children(v), then l(v) i(w). For
any node v, if l(v) =max, then we say it is max-
labeled :otherwise, we say it is min-labeled.

Given a set S of values, a min-max heap on S is
a binary tree T with the following properties : (1)
T has the heap-shape : and (2) T is min-max or­
dered :values stored at nodes on even(odd) levels
are smaller(greater) than or equal to the values
stored at their descendants (if any) where the
root is at level 0. An example of a min-max heap
is shown in Fig. 1.

the max field of HLi] is the largest key stored in
the subtree of H rooted at H| i 1.

In order to easily merge the relaxed min-max
heaps, we s나ggest the improved relaxed mirpmax-
pair heap, which is better than the leiaxed niin-
max heaps. This data structure's property is as
follows :

(1) T has the heap-shape ;
(2) T is a relaxed min-max tree : and
(3) T is the min-max-pair ordered.
But, in order to give the min-max value of each

level, we proceed from the root to leaves'. And so,

in both the present level and the following level,
we decide the min-max-pair. If the level that has
not changed treats it as a new root level, we pro­
ceed to every leaf.

This new data structure is made during the
merging of relaxed min-max heaps, and we use it.
An example of the new improved relaxed min-
max heap described above is shown in Fig. 2.b.

0 0® &)—响

A relaxed min-max tree T is a min-max-labeled
tree such that, for any node v in T, neither chil-
dren(v) nor grandchildren(v) may contain more
than one relaxed node. Clearly, and subtree of a
relaxed min-max tree is also a relaxed min-max
tree. This example is shown in Fig. 2.a. Min-max­
pair heap is a binary tree H featuring the relaxed
heap-shape property, such that every node in H
has two fields (called the min field and the max
fi이d) and such that H has a min-max ordering :
for every i(lMiMn), the value is stored in the
min fi시d of H[i] : similarly, the value stored in

에 a relaxed miirmax heap

(b) an improved relaxed min-max heap

Fig. 2. An example of a improved relaxed min-max-pair
heap

76 The Journal of the Acoustical Society of Korea, Vol. 14. No. IE (1995)

III. Merging the R이axed Min-Max Heaps

In order to efficiently merge the relaxed min-
max heaps, we develop the algorithm by first show­
ing how to merge two perfect heaps of eq니al size,
and then by showing how to merge two heaps of
different sizes.

(1) Merging Two Relaxed Min-Max Heaps of
Equal Size

To merge two perfect relaxed minimax heaps,
nheap and kheap, each of size k(= n), we first
compare the roots of two perfect relaxed rnin-max-
pair heaps. If the root of kheap is smaller than
the root of nheap, we consider it the root of the
newheap. Otherwise, we consider the root of *
nheap as the root of the newheap. Then, the ri-
ghtson of the newroot is the relaxed min-max
heap in which its root has the smaller value, and
the leftson is the larger val니e after comparing
the roots. As a result, the newheap produces a
newheap with 2k(= 2n) elements. But, at this
time, the newheap has not satisfied the relaxed
min-max heap's condition. To meet the relaxed
min-max heap's condition, we must recreate half
of the newheap. [see Fig. 3] The following pseu-
do^algorithm describes this.

procedure merge-equal-perfect*heaps (nheap, kheap)
begin

Creation as a improved relaxed min-max-pair

heaps for a relaxed min-max nheap or kheap

call simple merge-heaps(nheap, kheap)
We made the relaxed min-max heap from the

improved relaxed min-max-pair heap.

end

procedure simple-merge-heaps(nheap, kheap)
begin

if (root (nheap) < root(kheap))
copy kheap to leftson of newroot

copy nheap to nghtson of newroot
else newroot =the root of kheap

copy nheap to leftson of newroot
copy kheap to rightson of newroot

endif
invoke the min-max heap's condition from the
level which the roofs value has the same to leaf.

copy the last node of rightson to changed node,
end

Theorem 1. Two relaxed min-max heaps of equal
size n can be merged with O(log(n))
comparisons.

Proof. The number of comparisons in the above
algorithm to merge two relaxed min-max heaps of
equal size is dominated by the creation operation,
which requires O(log(n)) comparison [2, 7, 8]. Al­
so, we need the time complexity of O(log(n)), whi­
ch creates an improved relaxed min-max-pair he­
ap. This algorithm, therefore, takes O(log(n)). ■

(2) Merging Two Heaps of Different Sizes
Here, we will consider the simple case of inser­

ting a heap of k elements, kheap, into a heap of n
elements, nheap. Without the loss of generality,
assume that k M Llog(size(nheap)) J.

We proceed with three phases as follows. In
the first phase, we determine the level of the ro­
ot of slots which has k by the merging process in
nheap. Second, the pheap, (that is, the subheap
of nheap that is allocated in the nheap) and the
k'heap, (that is, the subheap of kheap that is al­
located in the kheap) are merged. At this time,
the merged new subheaps (pheap+k?heap) are sat­
isfied with the relaxed min-max heap condition.
In the last phase, we connect the newly merged
heap to nheap, which is an original relaxed min-
max nheap, and construct the relaxed min-max
heap condition for nheap. This pseudo-algorithm
is as follows.

proedure different-size-perfect-heap(nheap, kheap)

Merging Algorithm for Relaxed Min-Max Heaps 77

/* Initially we made first the relaxed min-max-
pair heaps of nheap and kheap * /

begin
(1) / we find the root of subhheapt that is location*

p which is allocated m each $나bheap of
nheap, R(i)(i = l, 2, p, where p is the
number of 2lh(khe；ipl'"11 + 1). Then we deter
mined the difference of height between
nheap and kheap * /

if (nheap is a perfect heap)
then perfect-levebfind(nheap, kheap)
else nonperfect-level-find(nheap, kheap)

(l.a)for(i = l to p) do
repeat

move the subheap of nheap which is
pointed to each subheap that is,

the location p of each
subheap and so we consturct the pheap.

until(nheapfs last node)
endfor

(l.b) for(i = 1 to p) do
while (the number of slots in each pheap
is not equal to 0) do

move the subheap of kheap which is
equal to the number of slots in the each
pheap and so we consturct the k'heap

endwhile
endfor

(2) for(i = 1 to p) do
/ * pheap which is made from nheap and

k'heap made from kheap are merged and
we make the newheap * /

union(pheap, k'heap)
creation (subheap (pheap + k'heap))

endfor
if(the root of subheap(pheap+k'heap) is changed)

then cv = 1 else cv = 0
(3) repeat

while(cv in each subheap = 1) do
we construct the nheap by comparing the
root of nheap to the previous node of p
indicated by each subheap and then we main­
tain the relaxed min-max heap's condition.

(see procedure construct-two-heaps)
endwhile

untiKall cv m each subheap 0)
end

IH.1 Level-Find Algorithm
In the first phase of the merging process, to

determine the location p's node, (that is, the root
of the subheap to allocate the slots from kheap),
we use the level of nheap. Then, we classify
nheap as a perfect heap or a non-perfect heap.

(a) Perfect Heap
In the process of selecting the location p of the

node, we must fill out a characteristic of the heap
from the leftmost node of nheap in order to fill
out the node of kheap, since nheap is a perfect
heap. In this perfect heap, there are two steps in
finding the location p of the node. In the first
step, we determine the number of subheaps in
nheap allocated all slots in order to find the lo­
cation p in nheap. The number of subheaps, how­
ever, is equal to the number of leaves in kheap.
In the second step, we select the locations as the
number of subheaps determined. Since nheap is a
perfect heap, the first subheap is located to the
leftmost leaf or subheap of nheap. Also, we store
the number of slots that are filled m each sub­
heap, In order to do this, we use the variable S
(R(i), i = l, 2, 이t, where 1 is the number of
the level in kheap). The process of finding p is as
follows :

procedure perfect-level-find
/* S(i) : the number of slots which the ith location

has*/

(1) / determine the number of subheaps /
p = the number of leaves in kheap

* *

(2) / determine the location of R(i) in nheap /
for(i = 1 to p) do
* *

I = 2(b(nheap)-l + j _]

R(i) = the ith location of nheap
endfor

7S The Journal of 나le Acoustical Society of Korea, Vol. 14. No. 1E (1995)

(3) /^determine the number of slots which R(i)
has/*

for(i = 1 to p) do
S(R(i)) =the number of slots in R(i)

endfor
end

Theorem 1, In the procedure perfect-level-find, it
runs O(log(k)).

Proof. To determine the number of subheaps, we
need the number of leaves in kheap : that is, p. In
step 2 and 3, it requires O(log(k)), since p means
the height of kheap. Therefore, it takes O(log
(k)). ■

(b) Non-perfect Heap
If nheap is a non-perfect heap, three steps are

necessary to select the location p of the node. In
the first step, we determine the number of sub­
heaps m nheap in order to allocate all slots from
kheap. We thus determine the location of the de­
termined subheap s root. Then, using the differ­
ence of the height between nheap (h(nheap))
and kheap (h(kheap)), we find the location that
is the root of the subtree that is not a first com­
plete binary tree from each subtree of the level
determined ; that is, if the difference between the
size of the subtree determined and the slot is not
less than 1, we find the lower subtree and select
the non-perfect heap that has the difference of 1.
We allocate the selected location to the first
subheap in the kheap.

In the second step, we allocate the next lo­
cation determined to the next subheap and so on.
Then, the number of subheaps allocated is equal
to the number of p determined in the first step.
The number of slots allocated in each subheap is
set to S(R(i)) such as in a perfect heap. The fol­
lowing pseudo-algorithm is the process of select­
ing the location p.

procedure nonperfect-level-find
begin

(1) / determine the number of subheaps /
p = 2(h(kheap"l)]

* *

(2) / determine the location of 比。first subheap/
(2.a) level —h(nheap) ~h(kheap)
* *

if(level < = 0) then level = 0
p]=2(ieven /* calculate 바le current level */

(2.b) if (nheap is not a leaf)

(a) if (the subheap of pl is a perfect heap)
나len pl =pl + l : 양。to step (2.b)

(b) LD=size(pl's subheap)-size(prs slot)
(c) if(LD M 1) then go to step 2.c
(d) if(the subheap of 2 pl is a perfect)

나)en pl = 2 pl +1 else pl = 2 pl
*

* *
(e) go to step 2,b

(2.c) R(l) = the location pl of nheap
S(R(1)) =the number of slots in R(l)

(3) /tallocate the location from 2nd subheap to pth /
for (i = 1 to p) do

*

R(i) =pl of nheap + (i —l)'s location
S(R(i)) =the number of slots in R(i)

endfor
end

Theorem 2. To execute to find the location p of
subheaps requires O(log(n/k)).

Proof. Step 1 of procedure nonperfect-level-find
needs 0(1), which is the height of kheap. In step
2,(2.a) requires 0(1), which is the difference be­
tween the height of nheap and kheap, and (2.b)
determines the location p of the root node of slots
in nheap. The process to determine the path from
the root of nheap to location p is log(n)-log(k)
= log(n/k). (2.c) requires 0(1). This procedure,
therefore, requires O(log(n/k)). ■

III.2 Merging Algorithm
Using subheaps allocated in the above section,

we suggest the merging method between k'heap
(which is the subheap of kheap) and pheap, (whi^
ch is the subheap of nheap).

To select the kfheap which is merged with phe-
ap, we move the number of slots in kheap that
are assigned to subheaps in nheap. To execute

Merging Algorithm for Relaxed Min-Max Heaps 79

this, we point out the location of kheap, which
has the ith location indicated by the total number
of slots already assigned to the previous subheaps.
Then, from the location of kheap determined, we
create the merged k'heap, which constructs the
number of slots to the subheap.

Fox example, in Fig. 4.c, we assume the circle
represents the internal node and the square re­
presents the slot. We store the number of slots of
each subheap to S(R(i)). To determine the locat­
ion of kheap indicated in the subheap, we select
the location of kheap using X(R(i)). Then each
X(R(i)) is initialized with 1. If S(R(i))={2, 2,1),
it represents in Fig. 3 the value of S(R(i)). Since
the number of slots in the first subheap is S(l)=
2, and the location indicated m kheap of the first
subheap is 1(X(1) = 1), the number of slots indic­
ated by the first subheap is 2(S(1)=2) for the
first location of kheap.

Since the number of slots in the second subhe­
ap, R(2), is S(2)=2, and the location indicated
m kheap of the second subheap is 3 (which is the
sum of S⑴=2 and 1), it points out two nodes
from the third location of kheap which has the
same number of slots (that is, 2(5(2) =2)) as the

second subheap. Also, the third subheap R(3) has
나)e number of slots S(3) = 1 and X(3)=5(2(S(1)
+2(S(2)) + 1): that is, it indicates only one, node,
since the third subheap pointed out the number
of slots(S(3) = 1) in the 5th location of kheap.
The following pseudo-algorithm describes these
points.

procedure selection-kheaps point

begin
mt XL1 ：nJ
(1) /* determine the location in the kheap which

each subheap has */
sum — 0
for(i = 1 to p) do

sum = sum-F S[i — 1]

endfor

「、'、/ \

® ® ® ®
비* 啤

t \

® 4
/ \ / \

® ©® ®

Fig. 3. The example of perfect heap which has a equal
size

(2) /* move the number of slots determined from
the kheap * /

(2.a) for (i = 1 to p) do
(2.b) for (j=X[i] to (X[i]+S[i + 1]-D) do

move the jth location of kheap to
proper R(i)

endfor
endfor

end

Theorem 3. The above procedure runs O(log(k) *
(the number of slots one subheap has)).

Proof. In the above procedure, (1) requires O
(p) since it runs p —1 times using the number of
p s subheap. The first step runs O(p). (2,a)

requires O(p) and (2.b) requires O (the number
of slots that one subheap has) since it occurs as
the number of slots from the proper location of

The Journal of 나忙 Acoustical Society of Korea, Vol. 14. No. IE (1995)

/ \

(35

/ \
O GD

/ \ / \
(形 GD GD

(a) nh««p

GD

/ \
（垂〉（形

/ \

GB建9

(S)
/

[d pheap and k*he«p

<n®) GD

/ \ / \ /

屈）術

（也①）①成）职）
{fj results

Fig. 4. The example of heaps with different sizes

(e) after merging

kheap. Therefore, it runs O(log(k) * (the number
of slots that one subheap has)), where p means
log(k) since it is the height of kheap. ■

Next, we consider that the pheap and the k'heap
are merging, [see Fig. 4d] The following pseudo­
algorithm describes this.

procedure union-heaps
/* Pheap and k'heap is constructed by his own min-

max values*/
begin

if(the pheap and the k'heap are perfect heaps)
then call merge -equal -perfect-heaps (pheap, k'heap)
else {for (i = 1 to p) do

(1) if (size(pheap) > size(k'heap))
then newroot = {last element in pheap}

change the location of pheap and k'heap
else newroot = {last element in k'heap}

(2) distribute pheap to temporary location t
according to the rules which an improved
relaxed min-max heap has

(3) place newroot at pt
(4) copy t to leftson of newheap(pt)

Merging Algorithm for Relaxed Mm-Max Heaps 81

(5) copy k'heap to rightson of newheap(pt)
(6) creation(newheap) according to the ong

mal rules which an improved i 어rrun
max pair he건p has

endfor}
end

In the above procedure, if the pheap and the
k'heap are perfect heaps, they are merged using
the same method as the perfect heap's case.
Otherwise, this procedure constructs a heap as we
treat the last node of the higher heap among two
heaps : that is, the pheap and the k'heap as the
root of the newheap. Since the newheap must
satisfy the relaxed min-max heap's condition, we
use the creation function. We acquire the result'
ant heap while the newheap moves the proper lo­
cation of nheap. But, if the root of the newheap
is changed, nheap does not satisfy the relaxed
min-max heaps condition. To solve this problem,
we use the variable cv in this paper, If the root
of k'heap is changed after merging the pheap and
the k'heap, we set the value of cv as 1. Other­
wise, the v치나e of cv is 0. Then, to meet the re­
laxed min-max heap's condition, we use the ere
ation function, and we repeat this method untill
all evs that each subheap has are equal to 0.

procedure construct-twoheaps

begin
(1) n = log I. size(nheap after merging) J

(2) for (I = n downto 1) do
k = 2(i',i
s = 0

(3) m = .sizefnheap after merging) i12. 2k~l)*

(4) for (j =k to m) do

P=2* 〕

if(p< L size(nheap after merging)丨 and
nheap(p) >nheap(p+l)) then p = p+l

if(nheap(p) < nheap(j))
then exchange(nheapfp). nheaptj.))

endtor
endfor

(5) for (i = 1 to p) do
creation(R(i)'s s니bheap)

trie root node is exchanged j
then cv = 1 else cv =()

endfor
(6) for (all cv in R(i) =0) do

returnfrelaxed min-max heap)
endfor

endfor
end

Theorem 4. The time complexity of the above pro­
cedure is O(log(n/k) *log(n)).

Proof. In the above procedure, step 4 requires
O(log(n/k)) since it exchanges the subheaps from
the location which is the difference between h
(nheap) and h(kheap). to the root. Steps 2 throu­
gh 4 require O(log(n) *log(n/k)).

Further, since step 5 requires log(n) as a cre­
ation function, it nms O(log2(pH-k')) because the
subheap is pheap and k'heap. Steps 1 through 6
need the value of cv#0;that is, it does not chan­
ge the root node of the subheap in 겄H subheaps.
This is what we indicate from the root of nheap
to location p, which the subheap pointed out.
This time complexity is O(log(n/k)) as seen in
theorem 1. Therefore, it runs O(log(n/k) *log

(n)).・

IV. The Analysis of Merging Relaxed Heaps

The time complexity can be computed in the
non-perfect heap as follows. The first phase of
merge finds the location p of a node allocated in
each s니bheap in nheap. If nheap is a perfect heap,
it req니ires 0(p). Otherwise, it requires O(log(n/
k)). The second phase takes O(log(k) * (the nu­
mber of slots that one subheap has)). The third
step requires 0((log(n) *log(n/k))+k)g‘(p + k')).
Therefore, the total time complexity is 0((Iog(n/
k) *log(n)).

The space complexity is computed as follows :
First, regarding the size of nheap and kheap,

史 The Journal of the Acoustical Society of Korea, Vol. 14. No. IE (1995)

which include the min and max fi이d、2n and 2k.
respectively, O(n + k) space is required. Second,
since each subheap needs the pheap and kheap, it
needs 2p and 2k', (that is, O(p + k')) since it needs
pheap(size 2p) and k'heap(size 2k'). Therefore,
the total space complexity is O(n + k), which me­
ans O(n + k + p + k').

To run the algorithm on a practical machine
using C-language, we use from 0.1 million to 8
million data which were randomly generated and
have no equal values. Also, we choose each data
point, which was obtained as the average of 20
program executions, each on a different set of
test data. As a result, two relaxed min-max heaps
yield the 627.6686 seconds for 8 million data : 297.
13 seconds for 4 million, 66.3 seconds for 1 mil­
lion, 24 seconds for 0.4 million : and 5.3 seconds
for 0.1 million.

V. Con이usion

This paper presents a new data structure that
efficiently merges relaxed rrun-max heaps. This
structure implements a mergeable double-ended
priority queue to support very efficient merging.
The improved relaxed min-max-pair heaps has a
disadvantage, however. It requires more storage
because each node m an array has two fields, a
min fi이d and a max fi기d. Despite the problem of
space 니tilization, we can efficiency merge two re­
laxed min-max heaps without the blossomed tree
and the lazying method used in [8]. This result
shows that, in two perfect heaps, the time com­
plexity takes O(log(k)), but, in two heaps of dif­
ferent sizes, the time Complexity requires Odog
(n/k) *log(k)assuming k L log (size (nheap)) I
and the space complexity takes O(n + k). When
we ran the algoh나im on a machine using C-langu-
age, it required 627.6686 seconds for 8 million da­
ta, which consisted of two relaxed min-max heaps
of different sizes. This practical time represents
the average time of running 20 programs. Also,
we think about that this me나]od may be appli­
cable to the parallel machine.

Acknowledgement

I thanks Dr. Zheng for his insighful comments,
which has helped to improve the results and the
presentation of 나us paper. And I thanks Dr. Pr­
asad who supplies me more data to complete 나lis
paper.

References

1. Aho, A.V., Hopcroft, J.E, and Ullman, J. D.. ''The
Design and Analysis of Computer Algorithm, ” Ad
dision-Wesely, 1974.

2. Atkison, M., Sack J., Santoro, N. and Strothotte,
T., “Min-max Heaps and Generalized Priority Qu
eue,” Commu. ACM. Vol.29, No. 10, pp. 996-1000,
1986.

3. Gonnet, G.H. and Nunro, J. I., Heaps on Heaps."
SIAM Journal of Computing, Vol. 15, No. 4, pp. 964
971, Dec. 1986.

**

4. S. Olariu, C.M. Overstreet and Z. Wen, “A Merge
able Double-Ended Priority Queue/' Computer Joui~
nal. Vol. 34. No. 5. pp.423-427, 1991.

5. Stasko. J. T. and Vitter, J.S.. "Pairing Heaps :
Experiments and Analysis.' Commu. ACM, vol. 30,
no. 2, pp.234-249. Mar. 1987.

*

6. Strothotte. Thomas and Sack, J.R., “An Algori나im
for Merging Heaps," Acta informatica 22, pp. 171-
186, 1985.

7. Y. Dmg, M. A. Weiss. "The Relaxed Min-Max He­
ap. A Mergeable Double Ended Priority Queue,"
Acta mformatica 30. pp. 215-232, 1993.

▲Yong Sik Min (Regular Member)
1981.년 2월 : Dept, of Computer Science, Kwangwoon

S.)
1984 년 2월 : Dept, of Computer Science, Kwangwoon

Univ.(M. S.)
1991 년 2월 : Dept, of Computer Science, Kwangwoon

Univ. (Ph. D)
1984 년 3월 ~ 1987느4 2월 : Full-time lecturer, Songwon

Junior College Dept, of Computer
Science

1987년 3월 : present: Associate Professor, Hoseo
Univ. Dept, of Computer Science

1993 년 8월 〜 1994년 8월 : Visiting Professor, Louisiana
State Univ. Dept, of Computer Science

