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The Design of Parallel Routing Algorithm on a
Recursive Circulant Network

Yongkeun Bae' - Byungkwon Park'' - liyong Chung 't

ABSTRACT

Recursive circulant graph has recently developed as a new model of multiprocessors, and drawn considerable
attention to supercomputing. In this paper, we investigate the routing of a message in recursive circulant, that is
a key to the performance of this network.

On recursive circulant network, we would like to transmit m packets from a source node to a destination node
simultaneously along paths, where the ith packet will traverse along the ith path (0<i<m—1). In oder for all
packets to arrive at the destination node quickly and securely, the ith path must be node-disjoint from all other
paths. For construction of these paths, employing the Hamiltonian Circuit Latin Square(HCLS), a special class

of (n X n) matrices, we present O(n?) parallel routing algorithm on recursive circulant network.

1. Introduction

The rapidly growing and intense interest in inter-

connection network used graph-theoretic properties{l]

#o] 8L 19973 Z2AS R g&d7n) A o) @

d: 20 ek AR A8

T3 3 4
1t A 8 :AZARO L ARA IS
1t ALY AR AAA e
EEHS197A 19 20Y, AR 19974 109 6Y

for its investigations and produced various intercon-
nection schemes. Many of these schemes have been
derived to optimize important parameters such as de-
gree, diameter, fault-tolerance, hardware cost, and the
needs of particular applications. Owing to low degree
and diameter, and the relative ease in mapping differ-
ent graph configurations (ring[3], liner arrays(3], me-
shes[4] and trees[5]) into recursive circulant network

(RCN) proposed by Park{3], these multicomputers have
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naturally drawn considerable attention to supercom-
puting[3]. The RCN G(N, d) consists of N identical
processors(nodes). Each processor, provided with its
own sizable local memory, is connected through bidir-
ectional, point-to-point communication channels to
different neighbors by jumping dn. Due to the above
mentioned properties, the recursive circulant topology
has been considered by many as an ideal parallel
architecture.

The routing of message is thus a key to the perfor-
mance of such networks. There are routing algorithms
using well-known methods, such as the Shortest Path
Algorithm(the Forward Algorithm)[6], the Backward
Algorithm[7], the Spanning Tree Algorithm{11]. These
algorithms provide for only sequential transmission,
from the source node to the desired node in a short
time. We now look for algorithms that are capable of
handling, multiple data items simultaneously trans-
mitted from the staring(source) node to the destination
node. There are a few algorithms on the n-dimensional
hypercube network[8]-{10] that allow us to locate n
disjoint paths such as the Hamiltonian path Algor-
ithm [13], the Rotation Algorithm using Tree Struc-
ture[l11], the Disjoint Path Algorithm[l1], and the
Routing Algorithms[12].

Generally speaking, the discovery of the maximum
number of node-disjoint paths on a random network
is computationally different. However, it has been
proven that these paths exist in a specific network([12].
From this fact, the Routing Algorithm for finding
these paths on the hypercube network has been de-
signed.

In this paper, we propose the algebraic approach to
the routing of message on the RCN. As described
above, m packets are simultaneously transmitted from
the starting(source) node to the destination node. In
this case, the i packet is sent along the i path from
the starting node to the destination node. In order for
all packets to arrive at the destination node quickly
and securely, the i path must be node-disjoint from

all other paths. To accomplish this, we employ the

operations of nodes presented in Cayley Graphl16]
and the special matrix called as Hamiltonian Circuit
latin Square(HCLS)[13], which is used to find a set of
n disjoint paths on hypercube network.

This paper is organized as follows:Section 1l descr-
ibes basic definitions and design the shortest paths be-
tween arbitrary two nodes. In Section I, by employ-
ing the shortest path obtained from previous section
and the HCLS, we propose the parallel routing algor-
ithm for the design of m node-disjoint paths on the
recursive circulant network. This paper concludes with
Section IV.

2. Design of the Shortest Path

Let A and B be any two nodes in the recursive
circulant network(RCN). The paper’s objective is to
find algorithms that will facilitate the transmission of
data from node A to B in that network. In order for
the data to traverse from node A to node B, it must
cross, successively, intermediate nodes along a path.
Each address of these nodes in the path that is succes-
sively traversed by the data, is obtained by modifying
the value of the bit of the address that represent the
node, in the node traversal sequence along the path.
In this paper, a node will be often used as the address
of that node and we will often use the terms:the bit
position in the node’s address or the dimension of the
space, interchangeably, indicating ir. both cases the
bit position of address associated with two nodes, and
subsequently identifying the link between these nodes
-the link over which data is moved in its way from

the source node to its neighboring node.

Definition 1:The RCN G(N, d) is defined as follows:
Let V={0, 1, 2, ..., N—1} as a set of nodes and E
={(v, w)|v +d' =w(mod N), d>2} as a set of edges,
where 0<i<[logsN1-1.

Researches on RCN are actively performed in graphic-

theoretical area such as embedding and fault-tolerance.



In this paper, we focus on parallel routing algorithm
for G(2™, 4), where m=2k. Node A on G(2™, 4) has
an address (an-1a0-2 -+ a; -+ a180), a; € {0, 1}, 0<i<
m—1. Therefore, an address of arbitrary node starts
from (00:--00) to (00---01)-- (11:-- 11). This address
can be described as (00---00), (=1 =1 —1~1) (00
- 0—1) on {mod 2™) computation. As mentioned ear-
lier, a node on Cayley Graph can traverse to another
node by performing a certain operation. We now em-

ploy these operations to RCN.

(Fig. 1) A recursive circulant graph G( 16, 4)

Definition 2:A positive operation and a negative
operation are executed on an even dimension of G
(2™, 4). Then, the routing function R, of RCN

for the 2k™ dimension is as follows:
node address A =(am—12m-2 "+ 2130), HE{0, 1},
0<i<m-—1
m
Rig,(A)=A+2%(mod 2™), Osks—z— -1
Node A is physically connected to m neighboring

nodes and these m paths are disjoint. The distance of

Node A and its neighboring node is one. To under-
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stand the concept of Definition 2 easily, Example | is
given.
Example 1:Let the address of starting node be (0010).
According to Definition 2, four disjoint paths, each
has length one, and operations are described below,

where g; is an operation of i dimension.

(0010) — (0011): go
(0010) — (0001): —go
(0010) — (0110): g,
(0010) — (1110): —g>

We now examine the operations occurring on odd
dimensions of G(2™, 4). Even operations do not exist
on this dimension physically, they can be considered
to occur when operations are executed twice in the
same direction. Because of modular computation with
carry, this idea can be accomplished.

In this paper, data is transmitted from source node
along the i'* path, which is physically connected to.
The path above is selected by the routing function de-
scribed in Definition 2. To do this, the relative ad-
dress of starting node and destination node can be

obtained below.

Definition 3:The relative address 7 of nodes A and
B on G(N, d) is computed as the absolute value of
difference between A and B.

r=|A—BI, where A=(am-12am-2 - a120),

B= (bm—l b2 blbo) and r=(rm—l m-2°"" 1'11'0)

Let two addresses of node A and node B be (0010)
and (1100). What is the relative address of two nodes?
The decimal value of address of node A is 2 and that
of node B is 12. So, the decimal value of the relative

address is 10, which is (1010} in binary notation.

Definition 4:Let T(A, S) be the logical transmission
path of data starting from node A to the destination

node B, where S is a multiset and a sequence of
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operations, via which data can reach at the desti-
nation node. T(A, S) is determined by the order of
the elements in the set S.

Given the starting node A and a multiset S, we
would like to transmit to the destination node via in-
termediate nodes. Suppose that node A and a set S be
(001101) and {(go, —g2, —82, g4, repectively. The
traversal of the data along the path outlined by the
sequence of nodes is (001101)— (001110)— (001010)
—(000110)—(010110). The path from node A to a
destination node is obtained from T(A, S) specified in
Definition 4, that is ((001101), (001110), (001010),
(000110), (010110)).

A set of the two consecutive bit (ry +rx) of the
relative address is {00, 01, 10, 11}. By applying oper-
ations obtained from the set, data can arrive at the
destination node. However, since the operations are
various, a number of paths are also made. Since the
paper’s objective is to find algorithms that will facili-
tate the fast transmission of data from a starting node
to a destination node, those operations which are ap-

propriate for this objective are defined in Definition 5.

Definition 5:Let hk be the shortest distance be-
tween (fm~Tm—-2F2c+1 T2k ** T1To) and (Tm—ytm-2 -+
00-+-ri1ro). hy and a sequence S of operations are

obtained as follows:

(tm—1Tm—2 - 00+ 1480} = (ru— 1 fm—z ++ 00 -+ 1170) (), by =0
(tm-1Tm=2 0L+ 1470} = (t=1Tm—2 - 00 -+ 1110) 1 {g), hie =15
(tm-1Tm—2 7+ 10+ 1110) = (tm—1fm— =+ 00 -+ 11T):

(Gok, Gor), =2 T { Gk 42 moams — &rk» — L), le=2;
(tm-1Tm-2 >+ 11 -+ 1110) = (fm-1Tm-2 = 00 = 14Tg):

(B +2modm, — L), hi=1,;

Among the patterns of (rx+1ra) explained above,
the interesting things are (10) and (11). The reason is
that these patterns could change the shortest distance
of (2k +2)* dimension, if available. In case of (ry +3
rx+2€1{(10), (11)}, the shortest distance of 2k +2)*

dimension is changed because (gx +2) is added to a
sequence of operations on (2k +2)* dimension. A se-
quence of operations generated in Definition 3 are
performed on positive direction if the address of a
destination node is greater than that of a source
node, otherwise on negative direction. Let the source
node and the destination node be (00011010} and
(00000001), respectively. hx and a sequence S of oper-
ations described in Definition 5 are 4 and {go, g3, 82,
84). Since the address of the destination node is gre-
ater, a sequence of operations becomes { —go, —g2.

—g2, —g4>.

Proposition 1: The shortest distance d(A, B) between
two nodes A and B is defined as follows:
H

d(A, 13.)=i)=:o hy

proof:Since RCN has vertex-symmetric structure,
the number of links between every two dimensions is
the same. If the shortest distance of two nodes is
represented as a sum of the shortest distance on each
dimension. Therefore a sum of hy, the shortest dis-
tance of (2k)™" dimension obtained in Definition 5, is
the shortest distance of two nodes A and B.

3. Application of the Hamiltonian Circuit
Latin Square to the Parallel Routing
Algorithm on a Recursive Circulant
Network

The m packets are transmitted from a source node
to a destination node on G(2™, 4). According to
Menger’s Theoreml[4], a set of m link-disjoint paths
exists. In this section, we would like to construct a set
of m node-disjoint and shortest paths in order to trans-
mit these packets safely and quickly. First, m packets
residing at a node on RCN are sent to its m neighbor-
ing nodes along a set of m disjoint paths(referred to
Definition 2). These m paths are generated by employ-
ing m different operations at the beginning step and



by performing m different operations at the last step
in order to arrive at a destination node. The figure
below illustrates the operations applied to generate m

paths from a source node to a destination node.

(Fig. 2) The operations applied at the first step and the
last step.

The i packet is transmitted along the i'" path, the
first intermediate node of which is obtained from ap-
plying the i operation{(g) at a starting node and the
last intermediate node transmits the packet to a desti-
nation node by applying the i*" operation(p;). In some

cases, g and pi can be the same.

Definition 6:Let O° be a set of operations occurring
at a starting node when m packets are transmitted
simultaneously and Let O be a set of operations
occurring at a destination node when m packets ar-

rive. These sets are defined as follows:
O'={#gul0<k< 2~ 1},

0*=1po, P1, = » Pm-2, Pm-1}, O°=0°

We now apply the HCLS(Hamiltonian Circuit Latin
Square) to find a set of m shortest and node-disjoint
paths. A latin square is a square matrix with m? en-
tries of m different elements, none of the elements oc-
curring twice within any row or column of the matrix.
The integer m is called the order of latin square. The
next definition describes the HCLS.
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Definition 7:The HCLS M' is constructed as follows
:Given distinct m points ao, a2, ***, 8m-2, 8m-1, @
Hamiltonian circuit aj—a;— -+ —ay—a; is ran-
domly selected. On the circuit each row of M can
be obtained from the Hamiltonian path, starting at
any position a(0<k<m-1), under the condition
that no two rows begin at the same position. If a
Hamiltonian path is aj—> a;—> --- — ay, then the row

obtained from it is [a; aj -+ a}

From the definition of the HCLS given in Defi-
nition 7, the MHCM(Modified Hamiltonian Circuit
Matrix) is constructed below.

Definition 8: Given the HCLS M'=a; ;], the MHCM
M2 is constructed as follows :M2=[A;;], A; j={ai ¢,

a1, v, Aij-t, &) 0<, j<m—1.

Referring to [13], the MHCM satisfies the condit-
ions of the MGNDP(Matrix for Generating Node-
Disjoint Paths), which is applied to the parallel routing
on the hypercube network and a number of node-dis-
joint paths can be created. Since the HCLS belongs to
a latin square, a set of elements in the first column is
the same as that of the last column. On the G(2™, 4),
an element in the HCLS is represented as an operat-
ion. Also, O° and O° in Definition 6 is described as a
set of elements in the first column and a set of
elements in the last column, respectively. We, intuit-
ively, realize that a set of n shortest and node-disjoint
paths is generated if the number of distinct sequences
of operations for arriving at an arbitrary node in a
short time is n(n<m). The remaining operations ex-
cluding these distinct operations from O* and O%
should be performed. The following example offers a
better understanding of the process explained above.

Example 2: Let A and B be (00011010) and (00110011).
According to Definition 5, a sequence S of operat-
ions is computed as {go, 82, 82, g4) and a set of shor-

test and node-disjoint paths is generated as follows.
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A set of distinct operations in S is {go, g2, B4J-
Using these operations, (3x3) HCLS can be
obtained from Definition 7.

8o 82 B4
HCLS=| g2 8¢ o
g4 80 82

Operations in the i™ row of the HCLS generated
above are performed for traversal of the i packet
and the remaining operation g, is also executed at the
point except the first and the last points. In order to
assure that these paths are node-disjoint, the remain-
ing operation should be executed at the same time. In
this example, the running point of the remaining oper-
ation g, is the second. Physical transmission paths
from node A to node B are described below.

Path 1:T(A, (go, g2, g2, 84)):
A—(00011011) — (00011 111) — (00100011) > B
Path 2: T(A, {g2, g2, g4, 80)):
A~ (00011110) — (00100010) — (00110010) > B
Path 3:T(A, (g4, 82, 8o, 82)):
A—(00101010) — (00101110) — (00100011) —» B

From Definition 6, O° and O? are obtained, that is,
0°=0'={go, —g0, 82, —82, 8, —84, g6, —g6}. Ex-
cluding the operations go, g2, g4, which are performed
in the first and the last steps of these paths above,
from O° and OY, O* and O become { —~go, —g2, —ga,
8s, —8s}.

Recall that we deal with the design of eight node-
disjoint paths, out of which five node-disjoint paths
are now constructed. Examining Definition 2, when a
packet traverses in a positive direction on i™ dimen-
sion and then traverses in a reverse direction on the
same dimension, a packet comes back to its original
position. This idea is applied to generation of disjoint
paths. If {ga, —gux} exists as a subset of O° and O%,
these operations are executed at the first and the last

steps of two paths newly constructed, and operations

obtained from the design of the shortest distance pre-
viously described at the middle steps of them. In case
of k=3, Path 4 and Path 5 are constructed below.

Path 4:T(A, {gs, o, 82, 82, 84, —86)):
A—(01011010)— (01011011)—(01011111)—
(01100011)— (01110011)—>B

Path 5:T(A, { —gs, 8o, 82, 82, &4, L))"
A—(110110110)— (110110111)—>(11011111)
—(11100011)—(11110011)->B

Excluding gs and —~gs from O° and O, O° and O¢
become {—go, —g2, —g4). While the operations at
the first and the last steps for paths designed so far
are not the same, the operations occurring at these
steps for the remaining three paths are the same. As
described earlier for Path 4 and Path 5, a packet
traverses in a positive direction on i dimension and
then traverses in a reverse direction on the same di-
mension. In this case, a packet traverses twice in the
same direction on i™ dimension and then traverses
twice in the reverse direction on the same dimension,
then, a packet comes back to its original position. A
sequence of operations for a path is now obtained.
Two operations traversed in the same direction are
chosen for the first and the last steps. Another two
operations in reverse direction and operations for the
shortest distance are changed to a sequence of mini-
mum number of operations(referring to Definition 5),
and then this sequence of operations is executed for
middle steps. Paths 6, 7, 8 are generated by handling
cases of (—go, —g2 and —g4), respectively.

Path 6: T(A, { —go, o, o, 8o, &2, &2, 84> —80)) T(A,
{—go, —8o0» —82s B4, B4, —L0)):
A— (00011001)— (00011000)— (00010100) —
(00100100)— (00110100)— B

Path 7:T(A, {~g2, 22, 82, 8o, &2, 82, 84, —&2) T(A,
(—g2, 8o, 8¢ 8¢, —82)):A—(00010110)—
(00010111)— (00100111)—>(00110111)—>B

Path 8:T(A, (—~g4, 84, B4, Bo, 82, 82, 84, —84)) T(A,



{~g4, Bo, 82, B2, — B4, 86, —Ba)):
A~ (00001010)~> (00001011)— (00001111) —
(00010011)—(00000011)— (01000011)— B

The process to find a set of a shortest and node-
disjoint paths is described above. We now propose a
parallel routing algorithm that generates a set of m min-
imum-distance and node-disjoint paths for the RCN.
In this paper, we will use the term “distance” between
two nodes in a interconnection network to refer to
the number of routing steps(also called hopcounts)

needed to send a message from one node to another.

RCN _ Routing_ Algorithm

A < an address of a starting node A

B < an address of a destination node B

O «— a set of operations occurring at a starting node A
0%« a set of operations requisite for getting to a des-

tination node B

begin

(1) Compute the relative address R of nodes A and B;
R=|A-B|

(2)Using the relative address R, a sequence S of
operations to arrive at node B in a short time are
produced.

(3)In order to design a set of shortest and node-dis-

joint paths, find a set S; of distinct elements in S.

A set of [S,] shortest and node-disjoint paths are

generated. Each path of length is {S1,

(3-1) Using the set S1, (nxXn) HCLS is constructed,
where n=|S;].

(3-2) Operations in the i row of the HCLS are per-
formed for traversal of the i packet and the
remaining operations in S should be executed
at the point except the first and the last points.

(3-3) 0"« 0O°—S; and 04« 0¢-8§,.

(4) Construct two node-disjoint paths, each path has
length |S|+2.

(4-1)If O° =4, the process is finished.

(4-2)If a set of {gx, —ga} is found in O, then these
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operations are performed at the first and the
last steps of two paths newly designed, and
operations in S at the middle steps of them,
otherwise go to (5).

4-3)O' <O —{gn, —ga}, O°—0%—{gn, —gx}
and go to (4-1).

(5)Generate the remaining paths, each of which has
length < |S] +3

(5-1) If O° =g, the process is finished.

(5-2) Produce a sequence S; of minimum number of
operations by reducing the size of SU{ g,
—gi}, &€ O(see Definition 5).

(5-3) Operation gi is performed at the first and the
last steps at traversal and operations of S; are
executed at the middle steps.

(5-4) O« O° —{g;}, 04«0 —~{g;} and go to (5-1).

end.

The routing algorithm of the recursive circulant
network is similar to that of the hypercube network.
For the RCN, the number of links is determined by
the jumping number. Considering the structure of this

network, the following proposition is described.

Proposition 2:Let A and B be any two nodes in
the RCN and assume the number of distinct
elements in S is |S:|. Then there are |S,| parallel
paths of length |S| between A and B.

Proof: Let |S; |=k. Then the operation positions that
differ between A and B are {pi, pz, ..., px}. We can
write k permutation of this set, indicating the differ-
ent operation positions for k parallel paths of length
k. These k permutation are used to design the HCLS.
Using this matrix, k parallel paths are obtained auto-
matically. In order for these paths to have length |S],
the remaining operations in S are now performed. If
each operation is running at the same point except
the first and last points and at the same time on k

traversals, these paths to B must be node-disjoint.

RCN _Routing_Algorithm is thus fairly straightfor-
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ward. The time involved in performing Steps (1), (2)
and (4) is small compared to the remaining steps. The
first, second and fourth steps of this algorithm does

not, therefore, contribute to an objectionable overhead.

Theorem 1:The construction of a set of m node-

disjoint paths can be performed in O(n?) time.

Proof': Applying the Algorithm above to generate m
node-disjoint paths. Important steps for determining
time complexity requisite for the Algorithm are two
things. One is to design the HCLS, which requires O
(n). The other is to run Step (5) of RCN_Routing_
Algorithm. In Step (5), in order to run g in O° at the
first and last steps in transmission, a sequence of
operations is determined as SU{—g, —g), and is
reduced by the rules described in Definition 5. Since
Reducing process requires O(n) time and the number
of elements in O® is less than n, Step (5) can be com-
puted in O(n?). Therefore, a set of m node-disjoint
paths can be created in O(n?) time.

The paper’s objective is to find a set of m shortest
and node-disjoint paths between two nodes. The major
topological characteristics of the RCN is considered
and the property of m paths obtained from the Al-

gorithm above is proven.

Theorem 2:The m transmission paths produced by
RCN_Routing_ Algorithm are shortest and node-

disjoint.

Proof:The m packets residing at node A are now
transmitted at time to,. These packets reach to its m
neighboring nodes at time t,. Then, each packet tr-
averses to a neighboring node of a destination node
along a shortest path(referring to Definition 5). Sup-
pose that two packets arrive at the same node except
a destination node during transmission. In order for
this case to occur, the following condition should be
satisfied. Let S; and S; be two sequences of operations
for sending two packets from a starting node to two

arbitrary nodes at time tj, where tj means that one
packet arrives at time t; and the other arrives at time
tj. Then, S; and S; should be the same. In other words,
if these sequences do not appear, a set of node-dis-
joint paths can be constructed. According to the Al-
gorithm described above, three classes of paths are gen-
erated on this network. We now consider three cases.

Case 1:Let Sy; and S); be two sequences of oper-
ations obtained from design of the shortest distance.
Then S;; and $y; must not be the same due to the
properties of the MGNDP.

Case 2:Let Sy and S; be two sequences of oper-
ations acquired by running Algorithm-(4). Then Sy
and S; must not be the same because the first
elements of Sy and Sy are gy and ~gy, respectively
and the rests of them are the same. In order for paths
generated through case 1 and case 2 to be node-dis-
joint, we prove that S;; and S must not be the same.
Considering the first element gy of Sy, it is not an el-
ement of S;;. Therefore, these sequences are different
all the times.

Case 3:Let S3 and Sj be two sequences of oper-
ations generated by performing Algorithm-(5), and T
be a sequence of operations, which creates a shortest
path from a source node to a desired node. Then, the
first elements of Sy and S3 do not belong to T, Ss;
does not contain the first element of Sy, and S3; does
not contain the first element of Ss;. So, S3 and S;; are
not be the same. To prove that the paths created by
all the cases are node-disjoint, S3; and Sz must not be
the same. A method of proof is the same as the case
2. Looking into the first element of Sy, the element is
not a part of Sy. Therefore, these sequences are dif-
ferent all the times.

4. Conclusion

In this paper, we present the algorithm that gen-
erates a set of m shortest and node-disjoint paths on
G(N, d), employing the Hamiltonian Circuit Latin
Square(HCLS), N=2", d=4. Even N and d are fixed



values, the algorithm can be easily extended on arbi-
trary recursive circulant networks. lmportant steps
for determining time complexity requisite for the al-
gorithm are two things. One is to design the HCLS,
which needs O{n). The other is to execute Step (5) of
RCN_Routing__ Algorithm, which requires O(n?). There-
fore, we can create O(n?) parallel routing algorithm

for constructing m shortest and node-disjoint paths.
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