• Title/Summary/Keyword: Nutrient mobilization

Search Result 5, Processing Time 0.017 seconds

Biogeochemical Activities of Microorganisms in Mineral Transformations: Consequences for Metal and Nutrient Mobility

  • Gadd, Geoffrey-M.;Burford, Euan-P.;Fomina, Marina
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.323-331
    • /
    • 2003
  • Bacteria and fungi are fundamental biotic components of natural biogeochemical cycles for metals and metalloids, and play important roles in dissolution, precipitation, oxidation and reduction processes. Some processes catalyzed by microorganisms also have important applications in environmental biotechnology in the areas of ore leaching and bioremediation.

Enzyme Activity of Cenococcum geophilum Isolates on Enzyme-specific Solid Media

  • Obase, Keisuke;Lee, Sang-Yong;Chun, Kun-Woo;Lee, Jong-Kyu
    • Mycobiology
    • /
    • v.39 no.2
    • /
    • pp.125-128
    • /
    • 2011
  • Enzyme activities of Cenococcum geophilum isolates were examined on enzyme- specific solid media. Deoxyribonuclease, phosphatase, and urease were detected in all isolates, whereas cellulase was not detected in any of the isolates. Variations in enzyme activities of amylase, caseinolysis, gelatinase, lipase, and ribonuclease were observed among isolates.

Changes in Miscanthus sacchariflorus Growth and Heading Rate Influenced by Water Stress Treatment at Reproductive Growth Stage (생식생장기 수분스트레스 처리가 억새의 출수율 및 생육 변화에 미치는 영향)

  • Lee, Ji-Eun;Cha, Young-Lok;Moon, Youn-Ho;Kim, Kwang-Soo;Kwon, Da-Eun;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.390-398
    • /
    • 2018
  • Miscanthus is a perennial energy plant that reproduces via rhizomes and has C4 metabolism. The flowering pattern of a wild type M. sacchariflorus (WTM) is affected by environmental conditions such as photoperiod and soil water status. Geodae-Uksae 1 (Geodea), which is a new M. sacchariflorus cultivar, has a lower heading rate than WMS; however the mechanism with why this happens is unknown. To confirm the effects of drought or waterlogging stresses on the growth of WTM and Geodea at the reproductive stage, we investigated variations in morphological characteristics and nutrient contents of the two Miscanthus species after four months of three water treatments. Morphological traits of the two Miscanthus species under the drought condition were similar to those under the control condition. But, the height of Geodea increased by 30% in response to the waterlogging stress. In WTM, the heading rate under the drought condition was lowest, while there was no significant difference between the waterlogging and control conditions. In the two Miscanthus species, nutrient contents, such as sucrose, total N, $P_2O_5$, K and Mg, were the highest under the drought condition, wherea Ca and Mg contents under the waterlogging condition were more than three times lower than those under the drought condition. The current study results showed that drought stress accelerated senescence and then inhibited nutrient mobilization in WTM, while waterlogging stress promoted the growth. This study is the first report to confirm that waterlogging stress promotes flowering of M. sacchariflorus.

Milk Protein Production and Plasma 3-Methylhistidine Concentration in Lactating Holstein Cows Exposed to High Ambient Temperatures

  • Kamiya, Mitsuru;Kamiya, Yuko;Tanaka, Masahito;Shioya, Shigeru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1159-1163
    • /
    • 2006
  • This experiment was performed to examine the influences of high ambient temperature on milk production, nutrient digestibility, energy and protein sufficiency ratio, and plasma metabolites concentration in lactating cows. In a $2{\times}2$ crossover design, four multiparous lactating Holstein cows were maintained in a chamber under treatment of constant moderate ($18^{\circ}C$) ambient temperature (MT) or high ($28^{\circ}C$) ambient temperatures (HT). The DMI and milk protein yield were significantly lower in HT (p<0.05). The milk yield, milk lactose yield, and milk SNF yield tended to be lower in HT (p<0.10). No statistical differences for 4% fat-corrected milk and milk fat yield were observed. Rectal temperatures were significantly higher in HT than MT (p<0.05). The apparent DM, OM, ether extract, CF, and ash digestibility did not differ between treatments. On the other hand, the apparent CP digestibility was increased significantly (p<0.05) and nitrogen free extract tended to increase (p<0.10) in HT. The sufficiency ratio of ME and DCP intake for each requirement tended to be lower in HT than in MT (p<0.10). Concentrations of total protein (TP), albumin, and urea nitrogen in plasma did not differ between treatments. Plasma 3-methylhistidine (3MH) concentration as a marker of myofibrillar protein degradation tended to be higher in HT (p<0.15). In conclusion, high ambient temperature was associated with a lower energy and protein sufficiency ratio, and decreased milk protein production, even though the body protein mobilization tended to be higher.

Tree Growth and Nutritional Changes in Senescing Leaves of 'Fuyu' Persimmon as Affected by Different Nitrogen Rates during Summer (여름 질소 시비량에 따른 '부유' 감나무의 생장과 노화 중 잎의 양분 변화)

  • Choi, Seong-Tae;Park, Doo-Sang;Ahn, Gwang-Hwan;Kim, Sung-Chul;Choi, Tae-Min
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.706-713
    • /
    • 2013
  • With pot-grown 4-year-old 'Fuyu' persimmon trees, this study evaluated the effect of different nitrogen (N) rates during summer on fruit characteristics, changes of leaf nutrients after harvest, reserve accumulation, and early growth the following year. A total of 0, 36 g N in June, and 72 g N in June and July was fertigated to each tree using urea solution. All the fruits were harvested on Nov. 3. Although not significant, fruits were larger for the 36 g and 72 g N than the 0 g N. Fruits for the 0 g N, having lower N concentration, were softer and had a better coloration and higher soluble solids, indicating that they matured earlier. SPAD value on Nov. 3 was 19.2 for the 0 g N and 54.9 for the 72 g N, and then the values linearly decreased in all the treatments by Nov. 14, exhibiting rapid leaf senescence. Specific leaf weight, being the lowest for the 0 g N, also gradually decreased during this period. Increasing N level significantly increased cross-sectional area of the trunk. Leaf N concentration on Nov. 3 was 0.87% for the 0 g N, whereas it was 1.18 and 1.52% for the 36 g and 72 g N, respectively. The N fertigation tended to increase leaf concentrations of soluble sugars, starch, and amino acids. Contents of N, P, K, soluble sugars, starch, and amino acids per unit leaf area gradually decreased in all the treatments during the 11 days after harvest, and the extent of the decrease was the lowest for the 0 g N. On the other hand, those of Ca, Mg, and protein did not consistently change during this period. The N fertigation resulted in higher concentrations of N in dormant shoots on Nov. 14, and although not great, it also increased soluble sugars, starch, amino acids, and protein. Clear differences were found in number of flower buds per one-year-old branch and total shoot length per tree the following year. The 72 g N trees had 5.6-fold more flower buds and 1.9-fold more shoot length, compared with those of 0 g N trees. However, it was noted that tree growth the following year was not significantly different between the 36 g and 72 g N the previous year. It was concluded that N rate during summer should be adjusted with considering the changes of fruit maturation, mobilization of leaf nutrients, and reserve accumulation.