DOI QR코드

DOI QR Code

Changes in Miscanthus sacchariflorus Growth and Heading Rate Influenced by Water Stress Treatment at Reproductive Growth Stage

생식생장기 수분스트레스 처리가 억새의 출수율 및 생육 변화에 미치는 영향

  • Lee, Ji-Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Cha, Young-Lok (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Moon, Youn-Ho (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Kim, Kwang-Soo (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Kwon, Da-Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Kang, Yong-Ku (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
  • 이지은 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 문윤호 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 김광수 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 권다은 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 강용구 (농촌진흥청 국립식량과학원 바이오에너지작물연구소)
  • Received : 2018.11.09
  • Accepted : 2018.12.10
  • Published : 2018.12.31

Abstract

Miscanthus is a perennial energy plant that reproduces via rhizomes and has C4 metabolism. The flowering pattern of a wild type M. sacchariflorus (WTM) is affected by environmental conditions such as photoperiod and soil water status. Geodae-Uksae 1 (Geodea), which is a new M. sacchariflorus cultivar, has a lower heading rate than WMS; however the mechanism with why this happens is unknown. To confirm the effects of drought or waterlogging stresses on the growth of WTM and Geodea at the reproductive stage, we investigated variations in morphological characteristics and nutrient contents of the two Miscanthus species after four months of three water treatments. Morphological traits of the two Miscanthus species under the drought condition were similar to those under the control condition. But, the height of Geodea increased by 30% in response to the waterlogging stress. In WTM, the heading rate under the drought condition was lowest, while there was no significant difference between the waterlogging and control conditions. In the two Miscanthus species, nutrient contents, such as sucrose, total N, $P_2O_5$, K and Mg, were the highest under the drought condition, wherea Ca and Mg contents under the waterlogging condition were more than three times lower than those under the drought condition. The current study results showed that drought stress accelerated senescence and then inhibited nutrient mobilization in WTM, while waterlogging stress promoted the growth. This study is the first report to confirm that waterlogging stress promotes flowering of M. sacchariflorus.

생식생장기 장기간의 건조와 침수 스트레스 하에서 물억새와 거대1호의 생육 및 양분함량 변화를 비교분석한 결과는 다음과 같다. 1. 건조 처리에 의한 두 억새 종의 형태적 특성 변화는 없었으나, 침수 처리에 의해 거대1호의 초장은 256.6 cm로 증가하였으며 마디수 또한 16.8개로 증가하였다. 2. 물억새의 출수율은 건조 조건에서 18.9%로 감소하였으나 침수 조건에서는 대조구와 통계적 유의성을 보이지 않았다. 거대1호는 대조구와 건조구에서 모두 출수하지 않았으며, 침수처리에 의해 48.6%의 출수율을 보였다. 3. 주요 양분인 유리당, 전질소, 인산, 칼륨, 마그네슘은 두 억새 모두 건조처리구에서 가장 높았으며, 칼슘과 마그네슘의 경우 침수처리구에서 두 억새 모두 3배이상 감소하였다. 4. 이러한 양분 변화는 건조처리에 의해 억새의 노화가 촉진되어 양분 이동이 저해된 결과로 사료되며, 침수 처리는 거대1호의 출수를 촉진한다는 결과를 처음으로 확인하였다.

Keywords

References

  1. An, G. H., J. K. Kim, Y. H. Moon, Y. L. Cha, Y. M. Yoon, B. C. Koo, and K. G. Park. 2013. A new genotype of Miscanthus sacchariflorus Geodae-Uksae 1, identified by growth characteristics and a specific SCAR marker. Bioprocess and Biosystems Engineering. 36(6) : 695-703. https://doi.org/10.1007/s00449-013-0893-7
  2. An, G. H., K. R. Um, J. H. Lee, Y. H. Jang, J. E. Lee, G. D. Yu, Y. L. Cha, Y. H. Moon, and J. W. Ahn. 2015. Flowering Patterns of Miscanthus Germplasms in Korea. Korean Journal of Crop Science. 60(4) : 510-517. https://doi.org/10.7740/kjcs.2015.60.4.510
  3. Bak, G. R., G. J. Lee, and J. H. Cho. 2017. The Effects of Drought Stress on Inorganic Compound and Growth of Potato Plant. Korean Journal of Crop Science. 62(3) : 241-248. https://doi.org/10.7740/KJCS.2017.62.3.241
  4. Beale G. V., S. P. Long. 1997. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus $\times$ giganteus and Spartina cynosuroides. Biomass Bioenergy. 12(6) : 419-428. https://doi.org/10.1016/S0961-9534(97)00016-0
  5. Cadoux, S., A. B. Riche, N. E. Yates and J.-M. Machet. 2012. Nutrient requirements of Miscanthus x giganteus: conclusions from a review of published studies. Biomass and Bioenergy. 38 : 14-22. https://doi.org/10.1016/j.biombioe.2011.01.015
  6. Clifton-Brown, J. C. and I. Lewandowski. 2000. Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Annals of Botany. 86(1) : 191-200. https://doi.org/10.1006/anbo.2000.1183
  7. Clifton-Brown, J. C., I. Lewandowski, B. Andersson, G. Basch, D. G. Christian, J. B. Kjeldsen, U. Jorgensen, J. V. Mortensen, A. B. Riche, K. U. Schwarz, K. Tayebi and F. Teixeira. 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agronomy Journal. 93(5) : 1013-1019. https://doi.org/10.2134/agronj2001.9351013x
  8. Decruyenaere, J. G. and J. S. Holt 2005. Ramet demography of a clonal invader, Arundo donax (Poaceae), in Southern California. Plant and soil 277(1-2) : 41-52. https://doi.org/10.1007/s11104-005-0264-5
  9. Demarty, M., C. Morvan and M. Thellier. 1984. Calcium and the cell wall. Plant, Cell&Environment. 7(6) : 441-448. https://doi.org/10.1111/j.1365-3040.1984.tb01434.x
  10. Deuter, M. 2000. Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. EMI Project, Final report : 28-52.
  11. Himelblau, E. and R. M. Amasino. 2001. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. Journal of Plant Physiology. 158(10) : 1317-1323. https://doi.org/10.1078/0176-1617-00608
  12. Himken, M., J. Lammel, D. Neukirchen, U. Czypionka-Krause and H. W. Olfs. 1997. Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant and Soil 189(1) : 117-126. https://doi.org/10.1023/A:1004244614537
  13. Jensen, E., K. Farrar, S. Thomas-Jones, A. Hastings, I. Donnison, and J. Clifton-Brown. 2011a. Characterization of flowering time diversity in Miscanthus species. Global Change Biology Bioenergy. 3(5) : 387-400.. https://doi.org/10.1111/j.1757-1707.2011.01097.x
  14. Jensen, E., M. Squance, A. Hastings, S. Thomas-Jones, K. Farrar, L. Huang, R. King, J. Clifton-Brown and I. Donnison. 2011b. Understanding the value of hydrothermal time on flowering in Miscanthus species. Aspects of Applied Biology. 112 : 181-189.
  15. Jensen, E., P. Robson, J. Norris, A. Cookson, K. Farrar, I. Donnison and J. Clifton-Brown. 2013. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. Journal of experimental botany. 64(2) : 541-552. https://doi.org/10.1093/jxb/ers346
  16. Jensen, E., P. Robson, K. Farrar, S. Thomas-Jones, J. Clifton-Brown, R. Payne, and I. Donnison. 2017. Towards Miscanthus combustion quality improvement: the role of flowering and senescence. Global Change Biology Bioenergy. 9(5) : 981-908. https://doi.org/10.1111/gcbb.12391
  17. Jorgensen, U. 1997. Genotypic variation in dry matter accumulation and content N, K and Cl in Miscanthus in Denmark. Biomass Bioenergy. 12(3) : 155-169. https://doi.org/10.1016/S0961-9534(97)00002-0
  18. Kim, G. Y., C. W. Lee, and G. J. Joo. 2004. The evaluation of early growth pattern of Miscanthus sacchariflorus after cutting and burning in the Woopo wetland. Korean Journal of Limnology. 37(2) : 255-262.
  19. Mann, J. J., J. N. Barney, G. B. Kyser and J. M. Di Tomaso. 2013. Miscanthus $\times$ giganteus and Arundo donax shoot and rhizome tolerance of extreme moisture stress. Gcb Bioenergy. 5(6) : 693-700. https://doi.org/10.1111/gcbb.12039
  20. Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn, S. T. Park, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of “Miscanthus” the Promising Bioenergy Crop. Weed&Turfgrass Science. 30(4) : 330-339.
  21. Nunn, C., A. Hastings, O. Kalinina, M. Ozguven, H. Schule, I. G. Tarakanov, T. Van Der Weijde, A. A. Anisimov, Y. Iqbal, A. Kiesel, N. F. Khokhlov, J. P. McCalmont, H. Meyer, M. Mos, K. U. Schwarz, L. M. Trindade, I. Lewandowski and J. C. Clifton-Brown. 2017. Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries. Frontiers in Plant Science. 8 : 907. https://doi.org/10.3389/fpls.2017.00907
  22. Park, C.-H., Y.-G. Kim, K.-H. Kim, I. Alam, H.-J. Lee, S. A. Sharmin, K.-W. Lee and B.-H. Lee. 2009. Effect of plant growth regulators on callus induction and plant regeneration from mature seed culture of Miscanthus sinensis. Journal of The Korean Society of Grassland and Forage Science. 29(4) : 291-298. https://doi.org/10.5333/KGFS.2009.29.4.291
  23. Purdy, S. J., J. Cunniff, A. L. Maddison, L. E. Jones, T. Barraclough, M. Castle, C. L. Davey, C. M. Jones, I. Shield and J. Gallagher. 2015. Seasonal carbohydrate dynamics and climatic regulation of senescence in the perennial grass, Miscanthus. Bio Energy Research. 8(1) : 28-41.
  24. Rayburn, A. L., J. Crawford, C. M. Rayburn and J. A. Juvik. 2009. Genome size of three Miscanthus species. Plant Molecular Biology Reporter. 27(2) : 184. https://doi.org/10.1007/s11105-008-0070-3
  25. Robson, P., M. Mos, J. Clifton-Brown and I. Donnison. 2012. Phenotypic variation in senescence in Miscanthus: towards optimising biomass quality and quantity. Bioenergy Research. 5(1) : 95-105. https://doi.org/10.1007/s12155-011-9118-6
  26. Seo, C. W., S. M. Lee, S. M. Kang, Y. G. Park, A. Y. Kim, H. J. Park, Y. H. Kim, and I. J. Lee. 2017. Selection of Suitable Plant Growth Regulators for Augmenting Resistance to Waterlogging Stress in Soybean Plants (Glycine max L.). Korean Journal of Crop Science. 62 : 325-32
  27. Smith, R. and F. M. Slater. 2010. Mobilization of minerals and moisture loss during senescence of the energy crops Miscanthus$\times$giganteus, Arundo donax and Phalaris arundinacea in Wales, UK. GCB Bioenergy 3(2) : 148-157. https://doi.org/10.1111/j.1757-1707.2010.01069.x
  28. Song, Y. S., J. E. Lee, Y. H. Moon, G. D. Yu, I. S. Choi, Y. L. Cha, and K. S. Kim. 2018. Changes of Morphological and Growth Characteristics Collected Miscanthus Germplasm in Korea. Weed&Turfgrass Science. 7(1) : 22-34. https://doi.org/10.5660/WTS.2018.7.1.22
  29. Taiz, L. and E. Zeiger. 2010. Plant physiology, Fifth edition, Life Science.
  30. Weng, J. H. 1993. Photosynthesis of Different Ecotypes of Miscanthus Spp as Affected by Water-Stress. Photosynthetica. 29(1) : 43-48.
  31. Yu, G. D. 2015. Characterization of Miscanthus germplasm collections and plant regeneration of M. sacchariflorus cv. 'Wooram' using immature inflorescence. Unpublished master's dissertation. Chonnam National University. Gwang Ju.