Browse > Article
http://dx.doi.org/10.7740/kjcs.2018.63.4.390

Changes in Miscanthus sacchariflorus Growth and Heading Rate Influenced by Water Stress Treatment at Reproductive Growth Stage  

Lee, Ji-Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
Cha, Young-Lok (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
Moon, Youn-Ho (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
Kim, Kwang-Soo (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
Kwon, Da-Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
Kang, Yong-Ku (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.63, no.4, 2018 , pp. 390-398 More about this Journal
Abstract
Miscanthus is a perennial energy plant that reproduces via rhizomes and has C4 metabolism. The flowering pattern of a wild type M. sacchariflorus (WTM) is affected by environmental conditions such as photoperiod and soil water status. Geodae-Uksae 1 (Geodea), which is a new M. sacchariflorus cultivar, has a lower heading rate than WMS; however the mechanism with why this happens is unknown. To confirm the effects of drought or waterlogging stresses on the growth of WTM and Geodea at the reproductive stage, we investigated variations in morphological characteristics and nutrient contents of the two Miscanthus species after four months of three water treatments. Morphological traits of the two Miscanthus species under the drought condition were similar to those under the control condition. But, the height of Geodea increased by 30% in response to the waterlogging stress. In WTM, the heading rate under the drought condition was lowest, while there was no significant difference between the waterlogging and control conditions. In the two Miscanthus species, nutrient contents, such as sucrose, total N, $P_2O_5$, K and Mg, were the highest under the drought condition, wherea Ca and Mg contents under the waterlogging condition were more than three times lower than those under the drought condition. The current study results showed that drought stress accelerated senescence and then inhibited nutrient mobilization in WTM, while waterlogging stress promoted the growth. This study is the first report to confirm that waterlogging stress promotes flowering of M. sacchariflorus.
Keywords
drought; flowering; growth characteristics; Miscanthus; waterlogging;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 An, G. H., K. R. Um, J. H. Lee, Y. H. Jang, J. E. Lee, G. D. Yu, Y. L. Cha, Y. H. Moon, and J. W. Ahn. 2015. Flowering Patterns of Miscanthus Germplasms in Korea. Korean Journal of Crop Science. 60(4) : 510-517.   DOI
2 Bak, G. R., G. J. Lee, and J. H. Cho. 2017. The Effects of Drought Stress on Inorganic Compound and Growth of Potato Plant. Korean Journal of Crop Science. 62(3) : 241-248.   DOI
3 Beale G. V., S. P. Long. 1997. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus $\times$ giganteus and Spartina cynosuroides. Biomass Bioenergy. 12(6) : 419-428.   DOI
4 Cadoux, S., A. B. Riche, N. E. Yates and J.-M. Machet. 2012. Nutrient requirements of Miscanthus x giganteus: conclusions from a review of published studies. Biomass and Bioenergy. 38 : 14-22.   DOI
5 Clifton-Brown, J. C. and I. Lewandowski. 2000. Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Annals of Botany. 86(1) : 191-200.   DOI
6 Clifton-Brown, J. C., I. Lewandowski, B. Andersson, G. Basch, D. G. Christian, J. B. Kjeldsen, U. Jorgensen, J. V. Mortensen, A. B. Riche, K. U. Schwarz, K. Tayebi and F. Teixeira. 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agronomy Journal. 93(5) : 1013-1019.   DOI
7 Decruyenaere, J. G. and J. S. Holt 2005. Ramet demography of a clonal invader, Arundo donax (Poaceae), in Southern California. Plant and soil 277(1-2) : 41-52.   DOI
8 Demarty, M., C. Morvan and M. Thellier. 1984. Calcium and the cell wall. Plant, Cell&Environment. 7(6) : 441-448.   DOI
9 Himken, M., J. Lammel, D. Neukirchen, U. Czypionka-Krause and H. W. Olfs. 1997. Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant and Soil 189(1) : 117-126.   DOI
10 Himelblau, E. and R. M. Amasino. 2001. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. Journal of Plant Physiology. 158(10) : 1317-1323.   DOI
11 Jensen, E., P. Robson, K. Farrar, S. Thomas-Jones, J. Clifton-Brown, R. Payne, and I. Donnison. 2017. Towards Miscanthus combustion quality improvement: the role of flowering and senescence. Global Change Biology Bioenergy. 9(5) : 981-908.   DOI
12 Jensen, E., K. Farrar, S. Thomas-Jones, A. Hastings, I. Donnison, and J. Clifton-Brown. 2011a. Characterization of flowering time diversity in Miscanthus species. Global Change Biology Bioenergy. 3(5) : 387-400..   DOI
13 Jensen, E., M. Squance, A. Hastings, S. Thomas-Jones, K. Farrar, L. Huang, R. King, J. Clifton-Brown and I. Donnison. 2011b. Understanding the value of hydrothermal time on flowering in Miscanthus species. Aspects of Applied Biology. 112 : 181-189.
14 Jensen, E., P. Robson, J. Norris, A. Cookson, K. Farrar, I. Donnison and J. Clifton-Brown. 2013. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. Journal of experimental botany. 64(2) : 541-552.   DOI
15 Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn, S. T. Park, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of “Miscanthus” the Promising Bioenergy Crop. Weed&Turfgrass Science. 30(4) : 330-339.
16 Jorgensen, U. 1997. Genotypic variation in dry matter accumulation and content N, K and Cl in Miscanthus in Denmark. Biomass Bioenergy. 12(3) : 155-169.   DOI
17 Kim, G. Y., C. W. Lee, and G. J. Joo. 2004. The evaluation of early growth pattern of Miscanthus sacchariflorus after cutting and burning in the Woopo wetland. Korean Journal of Limnology. 37(2) : 255-262.
18 Mann, J. J., J. N. Barney, G. B. Kyser and J. M. Di Tomaso. 2013. Miscanthus $\times$ giganteus and Arundo donax shoot and rhizome tolerance of extreme moisture stress. Gcb Bioenergy. 5(6) : 693-700.   DOI
19 Park, C.-H., Y.-G. Kim, K.-H. Kim, I. Alam, H.-J. Lee, S. A. Sharmin, K.-W. Lee and B.-H. Lee. 2009. Effect of plant growth regulators on callus induction and plant regeneration from mature seed culture of Miscanthus sinensis. Journal of The Korean Society of Grassland and Forage Science. 29(4) : 291-298.   DOI
20 Nunn, C., A. Hastings, O. Kalinina, M. Ozguven, H. Schule, I. G. Tarakanov, T. Van Der Weijde, A. A. Anisimov, Y. Iqbal, A. Kiesel, N. F. Khokhlov, J. P. McCalmont, H. Meyer, M. Mos, K. U. Schwarz, L. M. Trindade, I. Lewandowski and J. C. Clifton-Brown. 2017. Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries. Frontiers in Plant Science. 8 : 907.   DOI
21 Seo, C. W., S. M. Lee, S. M. Kang, Y. G. Park, A. Y. Kim, H. J. Park, Y. H. Kim, and I. J. Lee. 2017. Selection of Suitable Plant Growth Regulators for Augmenting Resistance to Waterlogging Stress in Soybean Plants (Glycine max L.). Korean Journal of Crop Science. 62 : 325-32
22 Purdy, S. J., J. Cunniff, A. L. Maddison, L. E. Jones, T. Barraclough, M. Castle, C. L. Davey, C. M. Jones, I. Shield and J. Gallagher. 2015. Seasonal carbohydrate dynamics and climatic regulation of senescence in the perennial grass, Miscanthus. Bio Energy Research. 8(1) : 28-41.
23 Rayburn, A. L., J. Crawford, C. M. Rayburn and J. A. Juvik. 2009. Genome size of three Miscanthus species. Plant Molecular Biology Reporter. 27(2) : 184.   DOI
24 Robson, P., M. Mos, J. Clifton-Brown and I. Donnison. 2012. Phenotypic variation in senescence in Miscanthus: towards optimising biomass quality and quantity. Bioenergy Research. 5(1) : 95-105.   DOI
25 Smith, R. and F. M. Slater. 2010. Mobilization of minerals and moisture loss during senescence of the energy crops Miscanthus$\times$giganteus, Arundo donax and Phalaris arundinacea in Wales, UK. GCB Bioenergy 3(2) : 148-157.   DOI
26 Deuter, M. 2000. Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. EMI Project, Final report : 28-52.
27 Song, Y. S., J. E. Lee, Y. H. Moon, G. D. Yu, I. S. Choi, Y. L. Cha, and K. S. Kim. 2018. Changes of Morphological and Growth Characteristics Collected Miscanthus Germplasm in Korea. Weed&Turfgrass Science. 7(1) : 22-34.   DOI
28 Taiz, L. and E. Zeiger. 2010. Plant physiology, Fifth edition, Life Science.
29 Weng, J. H. 1993. Photosynthesis of Different Ecotypes of Miscanthus Spp as Affected by Water-Stress. Photosynthetica. 29(1) : 43-48.
30 Yu, G. D. 2015. Characterization of Miscanthus germplasm collections and plant regeneration of M. sacchariflorus cv. 'Wooram' using immature inflorescence. Unpublished master's dissertation. Chonnam National University. Gwang Ju.
31 An, G. H., J. K. Kim, Y. H. Moon, Y. L. Cha, Y. M. Yoon, B. C. Koo, and K. G. Park. 2013. A new genotype of Miscanthus sacchariflorus Geodae-Uksae 1, identified by growth characteristics and a specific SCAR marker. Bioprocess and Biosystems Engineering. 36(6) : 695-703.   DOI