Browse > Article
http://dx.doi.org/10.5713/ajas.2006.1159

Milk Protein Production and Plasma 3-Methylhistidine Concentration in Lactating Holstein Cows Exposed to High Ambient Temperatures  

Kamiya, Mitsuru (National Agricultural Research Center for Kyushu Okinawa Region)
Kamiya, Yuko (National Agricultural Research Center for Kyushu Okinawa Region)
Tanaka, Masahito (National Agricultural Research Center for Kyushu Okinawa Region)
Shioya, Shigeru (National Institute of Livestock and Grassland Science)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.19, no.8, 2006 , pp. 1159-1163 More about this Journal
Abstract
This experiment was performed to examine the influences of high ambient temperature on milk production, nutrient digestibility, energy and protein sufficiency ratio, and plasma metabolites concentration in lactating cows. In a $2{\times}2$ crossover design, four multiparous lactating Holstein cows were maintained in a chamber under treatment of constant moderate ($18^{\circ}C$) ambient temperature (MT) or high ($28^{\circ}C$) ambient temperatures (HT). The DMI and milk protein yield were significantly lower in HT (p<0.05). The milk yield, milk lactose yield, and milk SNF yield tended to be lower in HT (p<0.10). No statistical differences for 4% fat-corrected milk and milk fat yield were observed. Rectal temperatures were significantly higher in HT than MT (p<0.05). The apparent DM, OM, ether extract, CF, and ash digestibility did not differ between treatments. On the other hand, the apparent CP digestibility was increased significantly (p<0.05) and nitrogen free extract tended to increase (p<0.10) in HT. The sufficiency ratio of ME and DCP intake for each requirement tended to be lower in HT than in MT (p<0.10). Concentrations of total protein (TP), albumin, and urea nitrogen in plasma did not differ between treatments. Plasma 3-methylhistidine (3MH) concentration as a marker of myofibrillar protein degradation tended to be higher in HT (p<0.15). In conclusion, high ambient temperature was associated with a lower energy and protein sufficiency ratio, and decreased milk protein production, even though the body protein mobilization tended to be higher.
Keywords
Dairy Cows; Heat Stress; Milk Production; Energy; Protein; Protein Degradation;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Baracos, V. E., E. J. Wilson and A. L. Goldberg. 1984. Effects of temperature on protein turnover in isolated rat skeletal muscle. Am. J. Physiol. 246:C125-C130   DOI
2 Emery, R. S. 1978. Feeding for increased milk protein. J. Dairy Sci. 61:825-828   DOI
3 MAFF. 1999. Japanese Feeding Standard for Dairy Cattle. Japan Livestock Industry Association, Tokyo
4 Nagasawa, T., J. Hirano, F. Yoshizawa and N. Nishizawa. 1998. Myofibrillar protein catabolism is rapidly suppressed following protein feeding. Biosci. Biotechnol. Biochem. 62:1932-1937   DOI   ScienceOn
5 Oltner, R. and H. Wiktorsson. 1983. Urea concentrations in milk and blood as influenced by feeding various amounts of protein and energy to dairy cows. Livest. Prod. Sci. 10:457-467   DOI   ScienceOn
6 SAS Institute Inc. 1999. SAS/STAT User's Guide: Version 8. SAS Institute Inc., Cary, North Carolina
7 Wassner, S. J., J. L. Schlitzer and J. B. Li. 1980. A rapid, sensitive method for the determination of 3-methylhistidine levels in urine and plasma using high-pressure liquid chromatography. Anal. Biochem. 104:284-289   DOI   ScienceOn
8 Young, V. R., S. D. Alexis, B. S. Baliga, H. N. Munro and W. Muecke. 1972. Metabolism of administered 3-methylhistidine. Lack of muscle transfer ribonucleic acid charging and quantitative excretion as 3-methylhistidine and its N-acetyl derivative. J. Biol. Chem. 247:3592-3600
9 National Agricultural Research Organization. 2001. Standard Tables of Feed Composition in Japan. Japan Livestock Industry Association, Tokyo
10 Hirayama, T. and K. Katoh. 2004. Effects of heat exposure and restricted feeding on behavior, digestibility and growth hormone secretion in goats. Asian-Aust. J. Anim. Sci. 17:655-658   DOI
11 Muroya, S., F. Terada and S. Shioya. 1997. Influence of heat stress on distribution of nitrogen in milk. Anim. Sci. Technol. (Jpn.) 68:297-300
12 Yoshizawa, F., T. Nagasawa, N. Nishizawa and R. Funabiki. 1997. Protein synthesis and degradation change rapidly in response to food intake in muscle of food-deprived mice. J. Nutr. 127:1156-1159
13 Blum, J. W., T. Reding, F. Jans, M. Wanner, M. Zemp and K. Bachmann. 1985. Variations of 3-methylhistidine in blood of dairy cows. J. Dairy Sci. 68:2580-2587   DOI   ScienceOn
14 Bunting, L. D., J. M. Fernandez, R. J. Fornea, T. W. White, M. A. Froetschel, J. D. Stone and K. Ingawa. 1996. Seasonal effects of supplemental fat or undegradable protein on the growth and metabolism of Holstein calves. J. Dairy Sci. 79:1611-1620   DOI   ScienceOn
15 Lee, J. H., C. K. Kim, Y. C. Chung, C. H. Kim and J. T. Yoon. 2004. Effects of milk production, season, parity and lactation period on variations of milk urea nitrogen concentration and milk components of Holstein dairy cows. Asian-Aust. J. Anim. Sci. 17:479-484   DOI
16 Ndibualonji, B. B., D. Dehareng, F. Beckers, C. Van Eenaeme and J.-M. Godeau. 1997. Continuous profiles and within-day variations of metabolites and hormones in cows fed diets varying in alimentary supplies before short-term feed deprivation. J. Anim. Sci. 75:3262-3277
17 Nagasawa, T., F. Yoshizawa and N. Nishizawa. 1996. Plasma $N^\tau$-methylhistidine concentration is a sensitive index of myofibrillar protein degradation during starvation in rats. Biosci. Biotechnol. Biochem. 60:501-502   DOI   ScienceOn
18 Nakashima, K., I. Nonaka, S. Masaki, M. Yamazaki and H. Abe. 2004. Myofibrillar proteolysis in chick muscle cell cultures during heat stress. Anim. Sci. J. 75:353-360   DOI   ScienceOn
19 Komaragiri, M. V. and R. A. Erdman. 1997. Factors affecting body tissue mobilization in early lactation dairy cows: 1. Effect of dietary protein on mobilization of body fat and protein. J. Dairy Sci. 80:929-937   DOI   ScienceOn
20 Broderick, G. A. and M. K. Clayton. 1997. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy Sci. 80:2964-2971   DOI   ScienceOn
21 Kurihara, M., A. Mukai and M. Shibata. 1989. Energy metabolism of dairy cattle under high environmental temperature: 2. Performance tests of open circuit respiration apparatus. Bulletin of the Kyushu National Agricultural Experiment Station 26:71-88
22 Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 74:3583-3597   DOI   ScienceOn
23 AOAC. 1990. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia
24 Mazumder, M. A. R. and H. Kumagai. 2006. Analyses of factors affecting dry matter intake of lactating dairy cows. Anim. Sci. J. 77:53-62   DOI   ScienceOn
25 Kamiya, M., Y. Iwama, M. Tanaka and S. Shioya. 2005. Effects of high ambient temperature and restricted feed intake on nitrogen utilization for milk production in lactating dairy cows. Anim. Sci. J. 76:217-223   DOI   ScienceOn
26 Bernabucci, U., P. Bani, B. Ronchi, N. Lacetera and A. Nardone. 1998. Influence of short- and long-term exposure to a hot environment on rumen passage rate and diet digestibility by Friesian heifers. J. Dairy Sci. 82:967-973   DOI   ScienceOn
27 Mukai, A., M. Shibata and M. Kurihara. 1989. Energy metabolism of dairy cattle under high environmental temperature: 1. Description of the energy metabolism laboratory at the Kyushu National Agricultural Experiment Station. Bulletin of the Kyushu National Agricultural Experiment Station 26:27-69
28 Shibata, M. 1983. Thermal balance and lactation of dairy cattle in a hot environment. Jpn. J. Zootech. Sci. 54:635-647
29 Terada, F. and S. Shioya. 1998. Effects of fish meal supplementation and environmental conditions on nitrogen excretion in lactating cows. Anim. Sci. Technol. (Jpn.) 69:620-624
30 Hirayama, T., K. Katoh and Y. Obara. 2004. Effects of heat exposure on nutrient digestibility, rumen contraction and hormone secretion in goats. Anim. Sci. J. 75:237-243   DOI   ScienceOn
31 Thompson, M. G., R. M. Palmer, A. Thom, S. C. Mackie, K. S. Morrison and C. I. Harris. 1996. Measurement of protein degradation by release of labeled 3-methylhistidine from skeletal muscle and non-muscle cells. J. Cell. Physiol. 166:506-511   DOI   ScienceOn
32 Bernabucci, U., N. Lacetera, B. Ronchi and A. Nardone. 2002. Effects of the hot season on milk protein fractions in Holstein cows. Anim. Res. 51:25-33   DOI   ScienceOn
33 Itoh, M. and R. Tano. 1977. Determination of the heat of combustion in fresh feces and urine with polyethylene film. Bulletin of the National Institute of Animal Industry 32:39-43