• 제목/요약/키워드: Numerical Stability

검색결과 2,851건 처리시간 0.026초

Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method

  • Li, Yong;Zhou, Hao;Dong, Zhenxing;Zhu, Weishen;Li, Shucai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.271-281
    • /
    • 2018
  • A jointed rock slope stability evaluation was simulated by a discontinuous deformation analysis numerical method to investigate the process and safety factors for different crack distributions and different overloading situations. An optimized method using Discontinuous Deformation Analysis for Rock Failure (DDARF) is presented to perform numerical investigations on the jointed rock slope stability evaluation of the Dagangshan hydropower station. During the pre-processing of establishing the numerical model, an integrated software system including AutoCAD, Screen Capture, and Excel is adopted to facilitate the implementation of the numerical model with random joint network. These optimizations during the pre-processing stage of DDARF can remarkably improve the simulation efficiency, making it possible for complex model calculation. In the numerical investigations on the jointed rock slope stability evaluations using the optimized DDARF, three calculation schemes have been taken into account in the numerical model: (I) no joint; (II) two sets of regular parallel joints; and (III) multiple sets of random joints. This model is capable of replicating the entire processes including crack initiation, propagation, formation of shear zones, and local failures, and thus is able to provide constructive suggestions to supporting schemes for the slope. Meanwhile, the overloading numerical simulations under the same three schemes have also been performed. Overloading safety factors of the three schemes are 5.68, 2.42 and 1.39, respectively, which are obtained by analyzing the displacement evolutions of key monitoring points during overloading.

Stochastic Stability Analysis of the Power System Incorporating Wind Power using Measurement Wind Data

  • Parinya, Panom;Sangswang, Anawach;Kirtikara, Krissanapong;Chenvidhya, Dhirayut
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1110-1122
    • /
    • 2018
  • This paper proposes an alternative method to evaluate the effect of wind power to the power system stability with small disturbance. Alternatively, available techniques for stability analysis of a power system based on deterministic methods are less accurate for high penetration of wind power. Numerical simulations of random behaviors are computationally expensive. A stochastic stability index (SSI) is proposed for the power system stability evaluation based on the theory of stochastic stability and energy function, specifically the stochastic derivative of the relative well-defined energy function and the critical energy. The SSI is implemented on the modified nine-bus system including wind turbines under different conditions. A doubly-fed induction generator (DFIG) wind turbine is characterized and modeled using measured wind data from several sites in Thailand. Each of the obtained wind power data is analyzed. The wind power effect is modeled considering the aggregated effect of wind turbines. With the proposed method, the system behavior is properly predicted and the stability is quantitatively evaluated with less computational effort compared with conventional numerical simulation methods.

대도시 기존 사면의 안정화 연구 (A Study of the Existing Slope Stability in a Big City)

  • 이수곤;양홍석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.265-272
    • /
    • 2001
  • Excavation in a big city is different from excavation in a local area because construction methods and stability are directly connected in a loss of life. Especially, estimate of rock mass slope stability is excuted by more detail and safty work. In this study, we are made reserches in rock mass slope stability and safety method that the slope is closed by elementary school in a big city. The result of many field study and numerical analysis is shown up direct reinforcement used to anchor.

  • PDF

Improvement of the fast Kalman algorithm's numerical stability

  • Joo, S.S.;Chung, C.S.;Yang, H.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.827-831
    • /
    • 1987
  • The analysis of a certian example and simulations given in the previous sections show that the modified FKA is more stable than the standard FKA without loss of the performance of it. The general analysis of modified FKA's numerical stability is the open problem with more simulations in order to prove the stability of it.

  • PDF

AN UNCONDITIONALLY GRADIENT STABLE NUMERICAL METHOD FOR THE OHTA-KAWASAKI MODEL

  • Kim, Junseok;Shin, Jaemin
    • 대한수학회보
    • /
    • 제54권1호
    • /
    • pp.145-158
    • /
    • 2017
  • We present a finite difference method for solving the Ohta-Kawasaki model, representing a model of mesoscopic phase separation for the block copolymer. The numerical methods for solving the Ohta-Kawasaki model need to inherit the mass conservation and energy dissipation properties. We prove these characteristic properties and solvability and unconditionally gradient stability of the scheme by using Hessian matrices of a discrete functional. We present numerical results that validate the mass conservation, and energy dissipation, and unconditional stability of the method.

Stability of Time Delay Systems Using Numerical Computation of Argument Principles

  • Suh, Young-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.127-133
    • /
    • 2003
  • This paper proposes a new numerical method to check the stability of a general class of time delay systems. The proposed method checks whether there are characteristic roots whose real values are nonnegative through two steps. Firstly, rectangular bounds of characteristic roots whose real values are nonnegative are computed. Secondly, the existence of roots inside the bounds are checked using the numerical computation of argument principles. An adaptive discretization is proposed for the numerical computation of argument principles.

Dynamic analysis of the agglomerated SiO2 nanoparticles-reinforced by concrete blocks with close angled discontinues subjected to blast load

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.121-128
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

단층대를 통과하는 터널의 안정성확보에 관한 연구 (A Study of Stability Evaluation for Tunnel at the Fault Zone Crossing)

  • 박인준;최정환;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.105-112
    • /
    • 2001
  • The purpose of this study is to assess the stability of tunnel for a high speed railway crossing the fault zone. The area where the tunnel crossed the fault zone can be unstable during construction and operation. Geotechnical investigations have been conducted to determine an optimum excavation method by obtaining the material properties around the fault zone and to check the stability of the tunnel. For the numerical analysis, the FLAC, numerical analysis code based on finite difference method, was utilized to analyze the behavior of the fault at three points having typical ground conditions. Based on the results of numerical analysis, the combinations of compaction grouting and LW grouting were determined as suitable methods for pre-excavation Improvement of the ground surrounding the tunnel opening. In conclusion, the stability of the tunnel construction for the high speed railway within the fault zone may be obtained by adopting the optimum excavation method and the reinforcement method. The numerical analysis based on FLAC program contains errors caused by assumptions used in numerical analysis, therefore constant monitoring with respect to the change of ground condition and groundwater is highly recommended to minimize the numerical error and the possibility of damage to tunnel.

  • PDF

수치적 실험에 의한 위성 내부 유동체의 안정-불안정 영역 판별 (DETERMINATION OF GLOBAL STABILITY OF THE SLOSH MOTION IN A SPACECRAFT VIA NUMERICAL EXPERIMENT)

  • 강자영
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권4호
    • /
    • pp.351-358
    • /
    • 2003
  • 회전안정화 로켓 모터를 이용하는 우주 비행체의 자세 불안정 현상을 수치적 실험을 통하여 연구하였다. 이전 연구에서는 해석적 방법을 통하여 주어진 우주 비행체에 대한 정상해를 구하고 실제 발생했던 공진과 유사한 공진조건을 찾았으나 정상해 근방에서의 안정도 또는 파라미터 공간 전역에서의 안정도가 어떻게 변하는 지를 알 수가 없었다. 따라서, 본 연구에서는 이전 연구결과를 기초로 하여 주어진 파라미터 공간 전역에서 수치적 실험을 통하여 유동체의 파라미터 값에 따라 위성체의 자세 안정도가 어떻게 변화하는지를 관찰하고, 시스템 설계에 필요한 파라미터들의 안정/불안정 영역을 결정하였다.

적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용 (Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF