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Abstract – This paper proposes an alternative method to evaluate the effect of wind power to the 
power system stability with small disturbance. Alternatively, available techniques for stability analysis 
of a power system based on deterministic methods are less accurate for high penetration of wind 
power. Numerical simulations of random behaviors are computationally expensive. A stochastic 
stability index (SSI) is proposed for the power system stability evaluation based on the theory of 
stochastic stability and energy function, specifically the stochastic derivative of the relative well-
defined energy function and the critical energy. The SSI is implemented on the modified nine-bus 
system including wind turbines under different conditions. A doubly-fed induction generator (DFIG) 
wind turbine is characterized and modeled using measured wind data from several sites in Thailand. 
Each of the obtained wind power data is analyzed. The wind power effect is modeled considering the 
aggregated effect of wind turbines. With the proposed method, the system behavior is properly 
predicted and the stability is quantitatively evaluated with less computational effort compared with 
conventional numerical simulation methods. 
 
Keywords: Stochastic stability analysis, Power system stability, Small disturbance, Well-defined 
energy function, Stochastic stability index, Doubly-fed induction generator wind turbine, Geographically 
distributed wind turbines, Aggregated effect, Numerical simulation method  

 
 
 

1. Introduction 
 
The impacts of wind energy generation on the power 

system are of increasing concerned due to a continual 
increase of wind energy penetration in many countries, 
passing the empirical acceptable level of 20% [1]. The 
cumulative wind power capacity grows by an average of 
22% annually since 2001 and reaches 486.8 GW worldwide 
at the end of 2016 [2]. The onshore wind turbine technology 
with the most market share to date is the doubly-fed 
induction generator (DFIG) with a share of more than 50% 
[3]. The escalation of wind power penetration presents a 
risk on the power system stability due to random nature 
of the wind power. This raises the importance of the 
power system stability analysis with the methods that can 
accurately capture the random characteristics of wind 
power. 

In typical small disturbance analyses, deterministic 
methods, such as eigenvalue analysis, have been used in 
the small signal stability analysis of power systems 
incorporating wind power [4, 5], and [6]. These methods 

employ the linearization technique to approximate nonlinear 
characteristics of the system. However, this method is less 
accurate for the large variation of loads and intermittent 
sources. Since the wind power is a stochastic process, 
analyses based on deterministic approaches may result in a 
possible misdetection of instability due to the inability to 
properly capture the random behavior of the wind power 
[7]. There have been many attempts to include the 
probabilistic characteristics in the stability analysis [7, 8], 
and [9]. To find the statistics of eigenvalues, the sensitivity 
of eigenvalues with respect to wind power has to be 
numerically determined. Nonetheless, these methods 
assume sufficiently small disturbance such that the system 
may be described by a set of linear equations and the non-
linear effects are neglected. A probabilistic method such 
as Monte Carlo simulation has been applied to study the 
characteristic of the power system [10-12], and [13]. 
Stochastic differential algebraic equations are also used. 
This technique combines the numerical integration and 
Monte Carlo simulation for stability analysis of the power 
system [14] and [15]. Even though the random effects have 
been captured in transient stability analysis, they however 
are computationally expensive. 

Alternatively, the stochastic techniques, such as in [16, 
17], and [18], have been developed and applied for power 
systems and power electronics stability analysis. The mean 
first passage time is proposed as a performance index to 
evaluate the stability of the system [19]. This technique is 
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based on a simplified (quadratic) energy function and 
successfully applied with power systems with synchronous 
machines. There has been a study of the effect of induction 
generator wind turbine using stochastic stability index 
(SSI) with a simplified induction generator model [20]. To 
properly address the DFIG, this paper studies the effects of 
stochastic wind power to the power system stability using 
an improved SSI which is a relative stability index. A 
simplified model of DFIG wind turbine is used in the 
stability analysis with the standard three-machine, nine-bus 
power system [21]. A sample of measured wind data in 
Thailand is first examined for the SSI evaluation. The SSI 
computational process can be summarized as shown in Fig. 
1. The wind speed and turbine data are used with the wind 
power modeling to obtain the mean and standard deviation 
values of the wind power. Then the power flow calculation 
is performed using the mean wind power along with 
other network conditions. The state variables are used to 
determine the critical energy. The SSI is computed using 
the critical energy, state variables at test conditions, 
along with the mean and standard deviation values of 
wind power. 

The paper is organized as follows: Section 2 describes 
the wind power characteristics. Section 3 explains the wind 
power and power system models. Section 4 discusses the 
concept of stochastic stability analysis and the proposed 
method. The SSI computation results of the nine-bus 
standard test system are provided in section 5. Finally, the 
conclusion is given in section 6. 

 
 

2. Characteristics of Wind Power 
 
The wind power characteristics are studied in this 

section. With a measurement station setup, the wind data 
have been collected and analyzed. To characterize the 
wind power, an appropriate model is chosen to accurately 
describe the effects of wind power on the power system. 

2.1 Wind power components 
 
The dynamics of wind speed consist of two main 

components, the slow variation component with spectral 
ranges between 10 hours and several months, and the 
turbulence components with spectral ranges from 1 second 
to 10 minutes [22]. The slow variation wind component is 
influenced by the diurnal and seasonal meteorological 
effects and can be modeled statistically using Weibull 
distributions. The turbulence component can be modeled as 
a zero mean random process [23]. As a consequence, the 
wind power also consists of slow variation and fast 
variation components. The slow variations of wind power 
(Pws) are influenced by the slow variation component of 
wind speed. The fast variations are influenced by the 
turbulence of wind speed and the dynamics of wind 
turbines. The decomposition of fast variations wind power 
(Pwf) are the low frequency component (frequencies up to 
0.5Hz) relating to the turbulence wind speed and the high 
frequency (frequencies above 0.5Hz) component relating to 
the dynamics of wind turbine [24]. The contribution of low 
frequency wind power variations (Pwl) is about 16 – 22% 
of the rated capacity. The high frequency component (Pwh) 
is only about 2% [24]. Therefore, the effect of high 
frequency power variation is essentially negligible.  

The wind power (Pw) can be expressed as, 
 

 w ws wf ws wlP P P P P= + » +  (1) 
 

2.2 Measurement of wind data 
 
A collection of wind speed data has been obtained from 

7 wind monitoring stations in various regions of Thailand, 
6 stations (S1 to S6) with 90-meter height located in the 
Northeastern Thailand and another station (S7) with 120-
meter height located in Bangkok as shown in Fig. 2. The 
siting locations are chosen based on the wind power 
potential. The wind turbines are located at the same place 
as the wind monitoring stations. The wind power is then 
calculated using the sampled wind speed data and the 
power curve of the 2.3 MW Siemens SWT2.3-101 wind 
turbine, commonly found DFIG wind turbines installed in 
Northeastern Thailand. Fig. 3 shows sampled data of wind 
speed and power at 120-meter height obtained from the S7 
wind monitoring station in Bangkok. The wind speed is 
measured every second while the hourly data is evaluated 
from the averaged values of the measured wind speed data. 
It can be seen that the hourly average wind speed and wind 
power (slow wind power variation or Pws) are modulated 
by the 1-second wind speed and wind power (fast wind 
power variation or Pwf), respectively. The contribution of 
the Pwf is mainly from a turbulence of wind speed which 
can be approximated by using the zero-mean normal 
distribution [25]. The data distributions of 6 equivalent 
wind turbines are illustrated in Fig. 4. The sum of 6 
geographically distributed wind turbines is shown in Fig. 5.  

 
Fig. 1. SSI computational process 
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Fig. 2. The locations of 7 wind monitoring stations (S1 to 

S7) 
 

 
Fig. 3. Sampled data of 1-second (1sec) and hourly (1h) 

wind speed (WS) and wind power (WP) at the S7 
station 

 

 
Fig. 4. Histogram of wind power variation of 6 equivalent 

wind turbines with zero mean Laplace distribution 
 
Each wind turbine is an equivalent representative of a 

wind farm. The fast wind power variations can be 
characterized by the zero mean Laplace distribution [26] as 
shown in Fig. 4. The total effect of 6 geographically 
distributed wind turbines is comparable with normal 
distribution data (red line) as shown in Fig. 5. To verify 
this assumption, the hypothesis for normal distribution of 
wind power variation data is tested using the Kolmogorov-
Smirnov hypothesis test method [27] with significance 
level at 0.05 (excluding calm winds). The Kolmogorov-
Smirnov test evaluates the null hypothesis that the data 

distribution of wind power variation is comparable to 
normal distribution. The results in Table 1 indicate that 
the Kolmogorov–Smirnov test accepts the null hypothesis 
which means there is no significant difference between 
the distribution of wind power variation and normal 
distribution. Since there is no evidence to counter the 
normal distribution hypothesis of the fast variation wind 
power, the random effect of wind power of the 
geographically distributed wind turbines is treated as a 
Wiener process in this work. 

The strength of the random perturbations inherent in the 
wind power may be reflected through noise intensity (aw) 
which is defined as, 

 

 w
sa
m

=   (2) 

 
where s and m are standard deviation and mean values, 
respectively. 

The noise intensity depends mainly on local wind 
characteristics and weathers. For example, the yearly noise 
intensity of four wind power plants in USA during 2000 to 
2010 varies as large as 0.8 to 1.0 [28]. In this study, it is 
calculated from the hourly average wind power and its 
standard deviation. An increase of noise intensity due to 
higher standard deviation value implies that the wind 
power is highly fluctuated and is subjected to power 
system instability. The higher noise intensity, the greater 

 
Fig. 5. Histogram of wind power variations of the sum of 6 

geographically distributed wind turbines compared 
with normal distribution data (red line) 

 
Table 1. Kolmogorov-Smirnov hypothesis test results of 6 

equivalent wind turbines and the total effect of all 
turbines 

Wind turbine station Significant level  
= 0.05 Meaning 

S1 H = 1 
S2 H = 1 
S3 H = 1 
S4 H = 1 
S5 H = 1 
S6 H = 1 

Reject null hypothesis 

Sum of S1 to S6 H = 0 Accept null hypothesis 
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variation of the wind power as given in (2).  
Statistical data of the total effect of 6 geographically 

distributed wind turbines and equivalent wind turbine 
(Station S3) are shown in Fig. 6 and 7, respectively. In Fig. 
6, at the noise intensity higher than 0.5, most of the wind 
power values are lower than 0.2 p.u. and decreased as the 
wind power increases. The noise intensity in Fig. 7 is rather 
scattered and greater than those in Fig. 6 for the same value 
of wind power. 

 
2.3 The wind power noise model 

 
As mentioned earlier, the wind power (Pw) is composed 

of the slow and fast variation components. The slow 
variation part is assumed to be constant within a sustained 
period, namely, one hour. The fast variation component can 
be approximated with the zero-mean Gaussian distributed 
white noise. The white noise is assumed in this study to 
allow the inclusion of the actual spectral density in the 
stochastic differential equations. The wind power is 
represented by the per unit mechanical wind power (P̄mw) 
as the input of the generator. Therefore, the P̄ws in (1) is 
replaced by the P̄mws and the P̄wl is replaced by P̄mwl and 
can be stated as follows (over bar represents per unit 
value): 

 
 mw mws mwlP P P= +  (3) 

 
where P̄mws is the slow variation component of P̄mw and is 
assumed constant. The P̄mwl is the low frequency variation 
component of P̄mw and is approximated with the zero-mean 

Gaussian distributed white noise. The expression in (3) 
becomes: 

 
 ( )1mw mws wP P Wa= + &  (4) 

 
where Ẇ is a zero-mean Gaussian distributed white noise 
[19]. Therefore, the wind power characteristics and the 
wind power noise model in (4) are used in wind power 
modeling detailed in the next section.  

 
 

3. Wind Power and Power System Modeling 
 

3.1 DFIG wind turbines model 
 
For the DFIG wind turbine, the stator is directly 

connected to the grid while the rotor winding is connected 
through the back-to-back converter for speed, torque, and 
output voltage regulations [5] as shown in Fig. 8. The 
converter is typically consisted of two AC/DC IGBT-based 
voltage source converters (VSCs), linked through a DC bus 
with DC capacitor (CDC). When the generator operates in 
super-synchronous mode, the power is delivered from the 
rotor to the network through the converters. When the 
generator operates in sub-synchronous mode, the rotor 
absorbs power from the network through the converters [5].  

The key component of the DFIG turbine is the speed-
torque characteristic which has direct effect on the 
synchronizing stability. The rotor dynamic relation 
between the torque balance and frequency deviation of the 
DFIG are provided as follows [5]: 

 
 ( ) ( )1d d wrw sw w w mw ewt M P Psw w w -= D = - = -& &  (5) 

 
where the subscript w represents the DFIG wind turbines 
and the over bar represents the per unit values. 

The voltage deviation equation of DFIG in the x-y or 
system reference axis can be represented in (6) which is 
modified from [5, 29], and [30]. The rotor voltage  (V̄r), 
voltage behind transient reactance (Ē’), and stator current 
(Īs) are complex numbers.  

 

( )( )
( )

( )

1 1
0

1 1
0 0

,
,

w w

w

s w s rrs r m
j j

rq rdr
j

s sq sd rr r

T j X X js j L L
E e V jV e
I jI e T rL

d d

d

w w

w

- -

- -

ü¢ ¢ ¢ ¢= - + - - +
ïï¢ ¢= = - ý
ï= - = ïþ

E E I E V
E V
I

&

 (6) 

 
Fig. 6. Relationship between the hourly average wind

power and noise intensity of 6 wind turbines  
 

 
Fig. 7. Relationship between the hourly average wind

power and noise intensity of equivalent wind
turbine 

 
Fig. 8. DFIG wind turbine diagram 
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Fig. 9. Simplified DFIG wind turbine model 

 
Note that the last term of the first row in (6) is zeroed 

out in the case of classical induction generators. The 
derivative of Ē’ in (6) can be separated into the derivative 
of |Ē’| and dw. The derivative of |Ē’| (or simply Ē’) is 
sufficiently small and negligible and (6) becomes: 

 
( )( ) ( )

[ ]

1 1

0

20

sin

0.274 0.346, 0.022 0.006
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k P c P

s
k cd

d

d
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¢
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+

ü
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ï
þ
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  (7) 
 
The other variables in (7) can be stated as follows: 
 

( ) ( )
( ) ( )

1 2
22

cos

1 and 1
rq w c w c sw w p sp sw w

sp op rw op w sw m ew w

V s k E k V k T P k

T k k s P k P s

d

w

ü¢ ¢ ¢= + + - + ï
ý

¢» = - » + ïþ
 (8) 

( )( )
( )( )( )

2
1 0

2
2 0 1

c rr m ss ss m

c rr m ss sw m ss m m sw ss

k L L L L L X

k L L L L L L X L L

w

w w w

ü¢= - ï
ý¢= - - + ïþ

 

  (9) 
 

where kw is very small compared with kp and negligible [5].  
Therefore, the DFIG wind turbine model is simplified 

and represented by the second-order model consisting of 
two differential equations in (5) and (7) as represented in 
Fig 9. In this figure, the rotor speed deviation (Dww) 
depends on the power imbalance between P̄mw and P̄ew. 
The rotor angle (dw) depends on the speed deviation, stator 
voltage  (V̄sw), and rotor voltage (V̄rq).  

 
3.2 The power system equations 

 
The power system in this study is the lossless structure 

preserving model from [16] which consists of an n-bus 
power system with m generator buses (p buses of DFIG 
and m-p buses of synchronous generators) and n-m load 
buses. The power system equations with wind turbine 
models from (5) and (7) are given as follows: 

 
 ( )i i mi ei i iM P P Dw wD = - - D&  (10) 

 ( )0 0i r s id w w w w w= - = D&   (11) 

 ( )w w mw ewM P PwD = -&  (12) 

 
( )

( ) ( )( )
0 0

1 1
0

sin

,
w w b sw a w a d rq

d m rr w b X X X wT E

k V k c k V

k L L E k

d dww w
- -

¢ ¢- ¢

ü= D - + + ï
ý¢= = ïþ

&
 (13) 

 ( ) 0k k lk ek kc P P cq w= - + -&  (14) 

 ( )
1,

sin
n

ew w j wj w j
j j w

P E V B d q
= ¹

¢= -å  (15) 

 ( )
1,

sin
n

ei i j ij i j
j j i

P V V B d q
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= -å  (16) 

 ( )
1,

sin
n

j jek k kj k
j j k

P V V B q q
= ¹

= -å  (17) 

 
where ws can be replaced by w0. The subscript i, w, and k 
represent synchronous generators, DFIGs wind turbine, 
and load buses, respectively. 

 
3.3 The perturbed-system model 

 
To represent the dynamic perturbed system equations 

[16], the following substitutions are made, 
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 (18) 

 
The mechanical power (P̄mw) in (12) is replaced by (4), 

the power system equations in (10) to (14) are rearranged 
to become a standard diffusion process as follows: 
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 (19) 

 
where βi = Di/Mi . The power system equations are used to 
formulate the energy function and its derivative while the 
standard diffusion process form is used to formulate the 
stochastic energy function as in the following section. 
 
 

4. Proposed Stochastic Stability Analysis 
 

4.1 Stochastic stability 
 
The energy function based on the direct method can 

provide a quantitative measure of degree of power system 
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stability without performing the time-consuming numerical 
integration [31]. Therefore, the energy function is adopted 
for power system stability evaluation in this work. The 
energy function and critical energy are generally known for 
the deterministic system but it is not the case for a 
stochastic system. A rolling ball on a hill may be used to 
illustrate trajectories of the system states as shown in Fig. 
10. The grey ball represents a particular system operating 
point. When the system is perturbed, the system states are 
changed and the system energy is increased. Once the 
system energy is greater than the critical energy, the system 
essentially becomes unstable. Unlike deterministic systems, 
the trajectories of states in the stochastic system are 
random and not repeatable. Conventional deterministic 
approaches in stability analysis may not be appropriate. 
However, the boundaries of stability of both deterministic 
and stochastic systems remain the same. It means that the 
critical energy can be used as the boundary of the 
stochastic system. 

From the theory of stochastic stability, without 
corrective action, the trajectories of any continuously 
perturbed system will diverge from the origin to the 
arbitrarily large distances with probability one in finite 
time even under an influence of small perturbation [19]. 
Thus the principle of the stochastic stability is to estimate 
the energy that the system may reach compared with the 
system energy at the boundary of the stable region. Since 
the trajectories of states are random, the system energy 
function is used to formulate the stochastic measure which 
will be described in following sections.  

 
4.2 Energy function 

 
An energy function has been used as a Lyapunov 

function candidate in many cases. For a single-machine 
power system, the energy function can be established as a 
positive definite function and used as a Lyapunov function. 
However, this is not the case for a multi-machine power 
system where the energy function possesses terms with 
indefinite sign. Alternatively, the well-defined energy 
function conditions have been imposed to evaluate the 
stability of the power system for the direct method [31]. 
The positive definite requirement of the Lyapunov function 
is relaxed such that the definite sign condition on the 
Lyapunov function is removed. For the nonlinear system 
with time invariant and force free, the conditions for the 

well-defined energy function are as follows [31]: 

Ÿ The derivative of well-defined energy function along 
any system trajectory is non-positive.  

Ÿ The derivative of energy function is zero when the 
operating points (state variables) are the equilibrium 
points. 

Ÿ The well-defined energy function is bounded which 
means state variables are also bounded. 

 
These three conditions are considered in the relative 

well-defined energy function (U) formulation using the 
first integral method in [31] and [32]. and are provided as 
follows: 
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  (20) 
 
The left-hand side in (20) is the derivative of U of the 

power system where the constant K is defined such that U 
is equal to zero at a stable equilibrium point ( yj = ys

j and xj 
= xs

j), where 
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  (21) 
 
From (20), the derivative of U can be stated as: 
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where j denotes generator buses including both 
synchronous and induction generators. In general, it is 
rather difficult to show that the relationship in (22) is 

 
Fig. 10. System energy from side (left) and top views

(right) 
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negative definite since the last term often becomes positive 
at any particular operating point. However, for the case of a 
power system with an infinite bus, y0 is zero and the last 
term of (22) is diminished. The derivative of U becomes: 
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Therefore, for the deterministic system, the derivative of 

U is the negative semi-definite function. With a 
substitution of (21) in (20) and solving the integral terms 
using the trapezoidal rule, the general form of energy 
function (U) is given as, 
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The critical energy is used as the boundary of stability 

of the power system. If the system has gained an excess 
energy beyond the critical value when perturbed by any 
disturbance, the system becomes unstable. For convenience, 
the critical energy (Uc) can be estimated using the method 
laid out in [33] which requires determination of the 
energy function, stable equilibrium points, and unstable 
equilibrium points. Note that the unstable equilibrium 
points in terms of the phase angles can be approximated 
using the value ±p – xs where xs is the stable equilibrium 
point [16]. 

 
4.3 Stochastic stability index  

 
From the standard diffusion process form in (19), if there 

exists a positive definite v(X, t) function with continuous 
partial derivatives, the system is said to be stable in the 
sense of Lyapunov providing that [34]: 

 
[ ]E d 0v £   for all 0t t³   (25) 

where E[.] is the expected value of the function. The 
function v is qualified as a Lyapunov function belonging to 
a particular equilibrium state of the stochastic differential 
equations [34]. 

Alternatively, the stochastic well-defined energy 
function (u(X, t)) is proposed to replace v(X, t) although it 
is not the positive definite function as be described in the 
previous section. The differentiation of u(X, t) can be 
stated as follows: 
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The L operator is the Itô differential operator which is 

represented by, 
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A substitution of the energy function (U) in (24) in the L 

operator in (27) results in the LU terms consisting of the 
time derivative, first-order, and second-order derivatives, 
known as a trace function (LUt).  

To simplify the calculation in the stability analysis, the 
following assumptions are made. First, U is a time 
invariant function and its partial derivative with respect to 
time is zero. Second, the initial state of the state variables 
is at equilibrium in which the first-order derivative terms 
are negligible. As a result, the expectation of (26) can be 
approximated as follows: 
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Note that LUt in (28) includes the diffusion function 

g(x,t) and also represents the rate of change of stochastic 
energy. The larger LUt, the faster the system energy 
increases in which it can then reach the critical energy (Uc).  

To evaluate the effects of the wind power on the power 
system, a stability index is proposed. The critical energy 
and the trace function LUt are incorporated.  

The index is a representation of how long the system 
energy takes to reach the critical value. Thus, the proposed 
stochastic stability index (SSI) is defined as follows: 

 
 tLcSSI U U=  (29) 

 
The SSI represents similar concept to the mean first 
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passage time or the mean first exit time which is the 
performance index to quantify the average time that a state-
space trajectory takes to change from a given operating 
point to the boundary of domain of attraction under an 
influence of small perturbations [18]. The SSI can be used 
to compare the robustness of a given power system with 
random perturbations including system power perturbed 
by wind power, load and power balance. The power system 
stability is more robust for a larger SSI. A higher SSI is due 
to a higher critical energy or lower trace function. That is a 
large value of energy is needed to push the system out of 
the domain of attraction. In other word, the system is 
more robust to the cumulative effect of the fluctuated wind 
power. To compute the SSI, the power, phase voltage, and 
angle at steady-state condition and network matrices of the 
power test system are evaluated using the relationships in 
(10) to (19). The critical energy is obtained from (24) and 
the trace function is obtained from (28) using state 
variables at steady-state condition. 

 
 

5. Stochastic Stability Index Evaluation 
 
In this section, an example of stability analysis of a 

power system with a collection of connected wind turbines 
is evaluated using the SSI. The power system test case is 
modified from the standard three-machine, nine-bus power 
system from [21]. Note that the line impedances of the 
original system are modified such that the system becomes 
lossless corresponding to the formulated system equations 
in (10) to (17). The single-line diagram of the test system is 
represented in Fig. 11. The base power and voltage are at 
100 MVA and 230 kV, respectively. 

In this study, bus 1 is connected to an infinite bus 
through a tie line. Originally, the generators G2 and G3 
are the synchronous generators but in this case, the 
generator G3 is replaced by wind power plant of 207MW, 
90 of 2.3-MW DFIG wind turbines. This is the largest 
wind farm in Thailand [35]. The system parameters of the 
base case are shown in the Table 2 and the DFIG wind 

turbine parameters are shown in Table 3 [5]. 
 

5.1 System characteristics under influence of random 
wind power 

 
This section represents the results of simulation and 

analytical analysis considering the relation between wind 
power, state variables, energy and LU of the power test 
system with the noise intensity of 0.7. 

The effects of wind power (PG3) variation to the 
exchanged power on infinite bus (PG1), Energy, LU, LUt, 
rotor angles on buses 2 and 3 (d2 , d3), phase angles on bus 
5, 6, and 8 (q5, q6 and q8), and the rotor speed deviation of 
G3 (D 3w ) during 100 to 720 seconds are shown in Fig. 12.  

It is well-known that the state variables are related to the 
stability of the power system as well as the energy. From 
Fig. 12(a), (c), and (d), when wind power fluctuates, the 
angles and rotor speed deviation of G3 consequently 
change. However, the exchanged power on infinite bus 
fluctuates in the opposite direction. In Fig. 12 (b), LU 
highly fluctuates and changes in the reverse manner with 
energy while LUt is almost steady, as a mean value of LU. 
In Fig. 12 (d), the rotor speed deviation (or –slip) in the 
range of –0.01 to 0.04 p.u. is a typical range [5].  

 
5.2 Relation between stochastic stability index and 

noise intensity 
 
This section illustrates the relation between SSI and 

noise intensity of wind power under different system 

 
Fig. 11. Single line diagram of the modified three-

machine, nine-bus power test system 

Table 2. Base values of the modified 3-machine, 9-bus 
power test system 

Bus no. type P (p.u.) Q (p.u.) V (p.u.) Angle 
(radians) 

Bus 1 infinite 0.716 0.27 1.04 0 
Bus 2 P-V 1.63 0.067 1.025 0.162 
Bus 3 P-V 0.85 -0.109 1.025 0.082 
Bus 4 P-Q 0 0 1.026 -0.038 
Bus 5 P-Q 1.25 0.5 0.996 -0.070 
Bus 6 P-Q 0.9 0.3 1.013 -0.065 
Bus 7 P-Q 0 0 1.026 0.065 
Bus 8 P-Q 1 0.35 1.016 0.012 
Bus 9 P-Q 0 0 1.032 0.035 

 
Table 3. Parameters of DFIG wind turbine 

 Parameters / Description Values 
M Inertia constant (sec.) 7.0 
L̄m Mutual inductance (p.u.) 3.95279 
L̄r Rotor leakage inductance (p.u.) 0.09955 
L̄s Stator leakage inductance (p.u.) 0.09241 
r̄r Rotor resistance (p.u.) 0.00549 
r̄s Stator resistance (p.u.) 0.00488 
kp Power loop constant 0.1 
kop Approximated optimum power-torque constant 0.56 
km Approximated speed control constant 0.7 
ys

w Speed deviation at steady state (Pw = 1.0) 0.2114 
ck Frequency dependent coefficient of dynamic 

loads [16] 
0.05 
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conditions. Several events present a risk for the power 
system instability, for example, oversupply, overload, and 
high penetration of wind. Therefore, the study is evaluated 
under 5 test conditions focusing on the variation of wind 
power (PG3) at different conditions of the power system 
including oversupply from local generator (PG2), and 
overload from load busses (PL5, PL6, PL8), as represented in 
Table 4. The effect of wind power on state variables, 
energy and SSI of the test system are analyzed. 

In Table 4, Case 1 is the base case. Case 2 and Case 3 
are when wind power increases to 1.275 and 1.7, 
respectively. For Case 4, the PG2 increases from 1.63 to 4.8  

 
Fig. 13. The SSI (log scale) of the test system (Case 1 to 5) 

with varying noise intensities 
 

representing an oversupply operation. For Case 5, the PL8 
increases from 1.0 to 5.5 representing the overload 
operation.  

The relation between SSI and noise intensity of wind 
power which varies from 0 to 1.2 is represented in Fig. 13. 
The steady state conditions in Table 4 are used to estimate 
the critical energy and LUt which are used to calculate SSI. 

From Fig. 13, as the noise intensity increases, the SSI 
progressively decreases. The lowest SSI occurs in Case 4 
follows by Case 5, Case 3, Case 2, and Case 1. It implies 
that the power system becomes less stable when the local 
power system is in the oversupply mode in Case 4 and 
follows by the overload mode in Case 5. As the wind 
power increases in Cases 2 and 3, the effects on the power 
system stability increase reflecting through the decrease of 
SSI. In Case 4, the power system is unstable within 720 
seconds as the noise intensity is more than 0.6 and at the 
SSI of about 0.04. This value can be set as the critical SSI 
for the reliability control. The SSI can be used as a measure 
of the degree of stability influenced by the random wind 
power. These results emphasize the advantage of the 
stochastic stability analysis. 

 
5.3 Instability due to random wind power and 

stochastic stability index comparison 
 
The SSI in the previous section is used as a measure of 

degree of stability of the power system under different 
conditions especially the oversupply mode in Case 4 
causing the system to become unstable as the noise 
intensity is greater than 0.6. To focus on the instability case, 
this section presents the instability due to the random wind 
power. A comparison between the SSI and conventional 
stability index of Case 4 condition is given.  

The simulation was done for 100 trials with 100 series of 
random values of wind power at a specified noise intensity 
and mean wind power. For illustration purpose, the 
samples of operation in Case 4 with the noise intensity of 
0.7 are shown in Fig. 14. The system energy, the phase 
angle on bus 2, and the frequency deviation on bus 3 are 
displayed in Fig. 14 (a), (b), and (c), respectively.  

 

 
Fig. 12. (a) the active power of G1 and G3, (b) energy and 

its derivatives, (c) phase angles, and (d) rotor 
speed deviation of G3 with noise intensity of 0.7 

 
Table 4. Test conditions with variation of PG2, PG3, PL8, and 

Uc compared with the base case 
PG1 PG2 PG3 PL5 PL6 PL8 Uc Case 

(Bus1) (Bus2) (Bus3) (Bus5) (Bus6) (Bus8)  
1 (base) 0.716 1.63 0.85 1.25 0.9 1 28.54 

2 0.313 1.63 1.275 1.25 0.9 1 28.11 
3 -0.080 1.63 1.7 1.25 0.9 1 27.39 
4 -2.444 4.8 1.7 1.25 0.9 1 0.275 
5 4.876 1.63 1.7 1.25 0.9 5.5 5.466 

Remark: The PG1 is the injected power from the infinite bus. 
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Fig. 14. (a) energy, (b) bus 2 phase angles, and (c) bus 3 

angular frequency deviation of Case 4 with noise 
intensity of 0.7 of 3rd round and 4th round 

 
From Fig. 14, the 3rd and 4th rounds of simulation with 

different trajectories of state variables provide different 
results of power system stability due to the stochastic 
behavior. For example, the 3rd round simulation results 
show that, at 617 seconds, the bus 2 phase angle and bus 
3 angular frequency reach their limits at 1.6 radian and 
1%, respectively. It is implied that when the wind power 
changes, the state variables vary over their limit values 
causing the energy to deviate beyond the critical value. 
However, the instability is not observed in the results of 
4th round simulation. This indicates a possibility that the 
system exhibits instability behavior due to the random 
effect of the wind power even though the operating 
condition remains the same. 

For each noise intensity in a particular initial condition 
the wind power is generated randomly and the simulation 
is carried out until the state variables of interest (speed 
and angle) are out of the limit or exit the predefined 
boundary. The first exit times are determined for 100 trials 
of simulation and the mean value is of the first exit times is 
obtained. 

When the noise intensity increases in Case 4, the mean 
first exit time decreses with the reduction of SSI, as shown 
in Table 5.  

From the results in Table 5, it implies that the power 
system has higher possibility of becoming unstable with 

shorter time span when the noise intensity is increased. 
Evidently, the SSI can reresent an influence of noise 
intensity of wind power to the power system stability 
similar to the mean first exit time with less computational 
effort. Excluding the process of obtaining the system initial 
conditions in power flow analysis, the computation of 
mean first exit time of 100 trials require 647.7 to 1,216.3 
seconds while the SSI computation requires less than 0.2 
seconds on an IntelR CoreTM i7 4510U CPU at 2.0 GHz 
with 4.0GB of RAM. 

 
5.4 SSI Implementation and analysis 

 
From Figs. 6 and 7, the SSI of the test system under an 

oversupply condition (Case 4 with varied wind power) can 
be determined using measured wind data as represented in 
Figs. 15 and 16, respectively.  

In Fig. 15, the lowest SSI of 0.87 occurs at 0.75 p.u. of 
wind power. The value of SSI is much larger than the 

Table 5. Mean first exit time, SSI, and computational time 
in Case 4 

Security Index Computational time (sec.) Noise  
intensity MFET SSI MFET  SSI  

0.7 310.3 0.0289 956.9 0.109 
0.8 279.2 0.0222 927.3 0.062 
0.9 243.5 0.0175 873.0 0.078 
1.0 227.7 0.0142 647.7 0.094 
1.1 221.8 0.0117 1216.3 0.140 
1.2 205.2 0.0098 954.7 0.125 

*Remark: MFET is the mean first exit time from 100 trials. 
 

 
Fig. 15. The SSI of the test system of Case 4 with varied 

wind power of geographically distributed wind 
turbines 

 

 
Fig. 16. The SSI of the test system of Case 4 with varied 

wind power using aggregated model of wind 
turbines 
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critical SSI of 0.04. This means that the power system is 
rather robust under the specified condition. However in Fig. 
16, the lowest SSI of 0.05 at wind power of 0.90 p.u. is 
much close to the critical SSI which implies that the power 
system is less robust for wind power plant with aggregated 
model. As mentioned earlier, an increase of wind power 
and its noise intensity has more influence on SSI. From 
measured wind data, the noise intensity decreases with an 
increase of wind power. From these results, the degree of 
influence of wind power affecting the power system 
stability depends on the characteristics of wind power 
deviation and the condition of the power system. The SSI 
provides insight in quantifiable effects of random wind 
power.The SSI can be used to evalutate or even forecast the 
stability of the power system using statistical wind data.  

 
 

6. Conclusions 
 
This paper proposes the Stochastic Stability Index (SSI) 

which is implemented on the modified three-machine, 
nine-bus power test system incorporating wind power 
from DFIG wind turbines. The random effects of wind 
power have been characterized where a hypothesis test 
has confirmed that the wind power of geographically 
distributed wind turbines is normally distributed. The SSI 
is computed from the critical energy and the derivative of 
the relative well-defined energy. The results of analysis 
reveal that the SSI is obviously corresponding to the mean 
exit time. The SSI decrease with increasing of wind power 
and its noise intensity and with the over and under supply 
conditions of the power system. This situation occurs 
with the same direction as the mean exit time when the 
state variables out of the limit values. However, the 
solution of mean exit time is computationally expensive. 
For the power test system proposed in this study, it 
spends less than 0.2 second to compute the SSI for each 
test condition while the computation of mean exit time 
from 100 trials spend 647.7 to 1,216.3 seconds. Therefore, 
SSI can be used to evaluate the stability of the power 
system comparatively with much less computational 
effort. The period of short term wind power forecast 
typically spans from few minutes to several hours ahead. 
Therefore, the SSI computation process can be 
implemented rapidly following the forecasting processes 
with less effect to the overall time frame of correct 
variation of regulating reserve. 
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Nomenclature 
 

mP  mechanical power (p.u.) 
eP  electromagnetic power (p.u.) 
lP  load power (p.u.) 

M, D Inertia and damping constants of generator (sec.) 
αw noise intensity of the wind power 
Ẇ zero-mean Gaussian distributed white noise 
w0 fundamental angular frequency (p.u.) 
wr angular speed of rotor (electrical radians per 

second) 
ws angular speed of electrical field at stator 

(electrical radians per second) 
D ww  rotor speed deviation (p.u.) 
D iw  speed deviation of synchronous generator (p.u.) 
sw slip of the induction generator 
V̄s stator voltage in x-y axis (p.u.) 
V̄r rotor voltage in x-y axis (p.u.) 
V̄rd , V̄rq direct-quadrature (d-q) components of V̄r (p.u.) 
V̄ voltage bus (p.u.) 
Ē’ voltage behind transient reactance in x-y axis 

(p.u.) 
|Ē’| magnitude of Ē’ (p.u.) 
dw angle of Ē’ (radians) 
d’w angle between Ē’w and V̄sw (radian) 
di  rotor angle of synchronous generator (radian) 
qk phase angle of the load bus voltages (radian) 
qj angle of bus voltage j (radian) 
Īs stator current in x-y axis (p.u.) 
Ī sd, Ī sq direct-quadrature (d-q) components of Īs (p.u.) 
ck frequency dependent coefficient of dynamic loads 
X̄’ transient reactance (p.u.) 
X̄ open-circuit reactance on stator (p.u.) 
T̄0 the transient open-circuit time constant (seconds) 

rr  rotor resistance (p.u.) 
L̄m  mutual inductance (p.u.) 
L̄rr  sum of mutual and rotor leakage inductances 

(p.u.) 
L̄ss  sum of mutual and stator leakage inductances 

(p.u.) 
ka , ca slope and offset of the linear relationship between 

dw and d’w 
T̄sp set-point torque at any generator speed (p.u.) 
kop aerodynamic performance constant from 

manufacturer 
kc1 , kc2 turbine generator constants 
km approximated speed control constant 
kp , kw speed-torque control parameters (PI-controller) of 

the turbine generator 
B̄wj, B̄ij, B̄kj susceptances between bus w , i, and k, and  

bus j (p.u.) 
xw (=dw) angle of voltage behind transient reactance 

(radian) 
yw (=Dw̄w) speed deviation of DFIG (p.u.) 
xi (=di) rotor angle of the synchronous generator (radian) 
yi (=Dw̄i) speed deviation the synchronous generator (p.u.) 
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xk (=qk) phase angle of the voltages at load buses k 
(radian) 

y0 speed deviation at the infinite bus (p.u.) 
U relative well-defined energy function  
u(X,t) stochastic well-defined energy function 
LU stochastic differential function of U 
LUt trace function of U 
Uc critical energy 
G(x,t) diffusion function 
f(x,t) nonlinear drift function 
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