Browse > Article
http://dx.doi.org/10.4134/BKMS.b150980

AN UNCONDITIONALLY GRADIENT STABLE NUMERICAL METHOD FOR THE OHTA-KAWASAKI MODEL  

Kim, Junseok (Department of Mathematics Korea University)
Shin, Jaemin (Institute of Mathematical Sciences Ewha W. University)
Publication Information
Bulletin of the Korean Mathematical Society / v.54, no.1, 2017 , pp. 145-158 More about this Journal
Abstract
We present a finite difference method for solving the Ohta-Kawasaki model, representing a model of mesoscopic phase separation for the block copolymer. The numerical methods for solving the Ohta-Kawasaki model need to inherit the mass conservation and energy dissipation properties. We prove these characteristic properties and solvability and unconditionally gradient stability of the scheme by using Hessian matrices of a discrete functional. We present numerical results that validate the mass conservation, and energy dissipation, and unconditional stability of the method.
Keywords
block-copolymer; Ohta-Kawasaki model; solvability; unconditionally gradient stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard Equation, Numer. Math. 87 (2001), no. 4, 675-699.   DOI
2 H. Gomez, V. M. Calo, Y. Bazilevs, and T. J. Hughes, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 49-50, 4333-4352.   DOI
3 Z. Guan, C.Wang, and S. M.Wise, A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation, Numer. Math. 128 (2014), no. 2, 377-406.   DOI
4 D. Jeong, J. Shin, Y. Li, Y. Choi, J. H. Jung, S. Lee, and J. S. Kim, Numerical analysis of energy-minimizing wavelengths of equilibrium states for diblock copolymers, Curr. Appl. Phys. 14 (2014), 1263-1272.   DOI
5 J. S. Kim, A numerical method for the Cahn-Hilliard equation with a variable mobility, Commun. Nonlinear Sci. Numer. Simul. 12 (2007), no. 8, 1560-1571.   DOI
6 J. S. Kim, Phase-field models for multi-component fluid flows, Commun. Comput. Phys. 12 (2012), no. 3, 613-661.   DOI
7 J. S. Kim and H. O. Bae, An unconditionally gradient stable adaptive mesh refinement for the Cahn-Hilliard equation, J. Korean Phys. Soc. 53 (2008), 672-679.   DOI
8 J. S. Kim, K. Kang, and J. S. Lowengrub, Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys. 193 (2004), no. 2, 511-543.   DOI
9 Y. Nishiura and I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Phys. D 84 (1995), no. 1-2, 31-39.   DOI
10 T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromol. 19 (1986), 2621-2632.   DOI
11 U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid, Academic press, London, 2001.
12 M. Pinna and A. V. Zvelindovsky, Large scale simulation of block copolymers with cell dynamics, Eur. Phys. J. B 85 (2012), 1-18.   DOI
13 J. Qin, G. S. Khaira, Y. Su, G. P. Garner, M. Miskin, H. M. Jaeger, and J. J. de Pablo, Evolutionary pattern design for copolymer directed self-assembly, Soft Matter 9 (2013), 11467-11472.   DOI
14 J. Shin, Y. Choi, and J. S. Kim, An unconditionally stable numerical method for the viscous Cahn-Hilliard equation, Discret. Contin. Dyn. Syst. Ser. B 19 (2014), no. 6, 1737-1747.   DOI
15 L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun. 108 (1998), 147-158.   DOI
16 M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers, Phys. Rev. A 41 (1990), 6763-6771.   DOI
17 J. W. Barrett, J. F. Blowey, and H. Garcke, Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility, SIAM J. Numer. Anal. 37 (1999), no. 1, 286-318.   DOI
18 F. S. Bates and G. H. Fredrickson, Block copolymers-designer soft materials, Phys. Today. 37 (1999), 32-38.
19 A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977), no. 138, 333-390.   DOI
20 J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267.   DOI
21 R. Choksi, M. Maras, and J. F. Williams, 2D phase diagram for minimizers of a Cahn-Hilliard functional with long-range interactions, SIAM J. Appl. Dyn. Syst. 10 (2011), no. 4, 1344-1362.   DOI
22 R. Choksi, M. A. Peletier, and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn-Hilliard functional, SIAM J. Appl. Math. 69 (2009), no. 6, 1712-1738.   DOI
23 F. Drolet and G. H. Fredrickson, Combinatorial screening of complex block copolymer assembly with self-consistent field theory, Phys. Rev. Lett. 83 (1999), 4317-4320.   DOI
24 D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, Computational and mathematical models of microstructural evolution (San Francisco, CA, 1998), 39-46, Mater. Res. Soc. Sympos. Proc., 529, MRS, Warrendale, PA, 1998.
25 Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal. 28 (1991), no. 5, 1310-1322.   DOI
26 D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished article, http://www.math.utah.edu/-eyre/research/methods/stable.ps (1998).