• 제목/요약/키워드: Numerical Reconstruction

검색결과 249건 처리시간 0.03초

유체 유동을 동반한 수치상결정 미세구조의 3차원 성장에 대한 수치해석적 연구 (NUMERICAL SIMULATION OF THREE-DIMENSIONAL DENDRITIC GROWTH WITH FLUID CONVECTION)

  • 윤익로;신승원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.355-362
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid to solid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material which governs the physical properties of final product. In this paper, we expand our previous two-dimensional numerical technique to three-dimensional simulation for computing dendritic solidification process with fluid convection. We used Level Contour Reconstruction Method to track the moving liquid-solid interface and Sharp Interface Technique to correctly implement phase changing boundary condition. Three-dimensional results showed clear difference compared to two-dimensional simulation on tip growth rate and velocity.

  • PDF

유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구 (Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow)

  • 윤익로;신승원
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.

CLSVOF 방법을 이용한 액적-벽면 충돌에 관한 수치적 연구 (Numerical Study of Droplet Impact on Solid Surfaces Using a Coupled Level Set and Volume-of-Fluid Method)

  • 서영호;손기헌
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.744-752
    • /
    • 2003
  • A level set method is combined with the volume-of-fluid method so that the coupled method can not only calculate an interfacial curvature accurately but also can achieve mass conservation well. The coupled level set and volume-of-fluid(CLSVOF) method is efficiently implemented by employing an interface reconstruction algorithm which is based on the explicit relationship between the interface configuration and the fluid volume function. The CLSVOF method is applied for numerical simulation of droplet impact on solid surfaces with variable contact angles. The numerical results are found to preserve mass conservation and to be in good agreement with the data reported in the literature. Also, the present method proved to be applicable to the complex phenomena such as breakup and rebound of a droplet.

ELECTRICAL RESISTANCE IMAGING OF TWO-PHASE FLOW WITH A MESH GROUPING TECHNIQUE BASED ON PARTICLE SWARM OPTIMIZATION

  • Lee, Bo An;Kim, Bong Seok;Ko, Min Seok;Kim, Kyung Youn;Kim, Sin
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.109-116
    • /
    • 2014
  • An electrical resistance tomography (ERT) technique combining the particle swarm optimization (PSO) algorithm with the Gauss-Newton method is applied to the visualization of two-phase flows. In the ERT, the electrical conductivity distribution, namely the conductivity values of pixels (numerical meshes) comprising the domain in the context of a numerical image reconstruction algorithm, is estimated with the known injected currents through the electrodes attached on the domain boundary and the measured potentials on those electrodes. In spite of many favorable characteristics of ERT such as no radiation, low cost, and high temporal resolution compared to other tomography techniques, one of the major drawbacks of ERT is low spatial resolution due to the inherent ill-posedness of conventional image reconstruction algorithms. In fact, the number of known data is much less than that of the unknowns (meshes). Recalling that binary mixtures like two-phase flows consist of only two substances with distinct electrical conductivities, this work adopts the PSO algorithm for mesh grouping to reduce the number of unknowns. In order to verify the enhanced performance of the proposed method, several numerical tests are performed. The comparison between the proposed algorithm and conventional Gauss-Newton method shows significant improvements in the quality of reconstructed images.

HCIB 법을 이용한 변형하는 평판 주위의 3차원 유동해석 (COMPUTATIONS ON FLOW FIELDS AROUND A 3D FLAPPING PLATE USING THE HYBRID CARTESIAN/IMMERSED BOUNDARY METHOD)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2007
  • A code is developed using the hybrid Cartesian/immersed boundary method and it is applied to simulate flows around a three-dimensional deforming body. A new criterion is suggested to distribute the immersed boundary nodes based on edges crossing a body boundary. Velocities are reconstructed at the immersed boundary nodes using the interpolation along a local normal line to the boundary. Reconstruction of the pressure at the immersed boundary node is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other experimental and numerical results for the velocity profiles around a circular cylinder under the forced in-line oscillation and the pressure coefficient distribution on a sphere. The code is applied to simulate the flow fields around a plate whose tail is periodically flapping under a translation. The effects of the velocity and acceleration due to the deformation on the periodic shedding of pairs of tip vortices are investigated.

A damage localization method based on the singular value decomposition (SVD) for plates

  • Yang, Zhi-Bo;Yu, Jin-Tao;Tian, Shao-Hua;Chen, Xue-Feng;Xu, Guan-Ji
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.621-630
    • /
    • 2018
  • Boundary effect and the noise robustness are the two crucial aspects which affect the effectiveness of the damage localization based on the mode shape measurements. To overcome the boundary effect problem and enhance the noise robustness in damage detection, a simple damage localization method is proposed based on the Singular Value Decomposition (SVD) for the mode shape of composite plates. In the proposed method, the boundary effect problem is addressed by the decomposition and reconstruction of mode shape, and the noise robustness in enhanced by the noise filtering during the decomposition and reconstruction process. Numerical validations are performed on plate-like structures for various damage and boundary scenarios. Validations show that the proposed method is accurate and effective in the damage detection for the two-dimensional structures.

Reconstruction of 3-D measurement data

  • Sawada, Hideyiki;Matsumoto-Moriyama, Masao;Fukuda, Hideki;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.261-264
    • /
    • 1993
  • To reconstruct the real 3-D shape from the 3-D measurement data from the multiple directions, the rconstruction of the object on the basis of the mosaic processing of the 3-D measurement data are proposed. In this method, to conduct the reconstruction, the connection points have to be identified among the over-lap area between adjacent 3-D data. In this study, the simple image matching method is adopted for the identification of connection points, and this method is verified from numerical experiments.

  • PDF

A MODIFIED CAHN-HILLIARD EQUATION FOR 3D VOLUME RECONSTRUCTION FROM TWO PLANAR CROSS SECTIONS

  • Lee, Seunggyu;Choi, Yongho;Lee, Doyoon;Jo, Hong-Kwon;Lee, Seunghyun;Myung, Sunghyun;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권1호
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, we present an implicit method for reconstructing a 3D solid model from two 2D cross section images. The proposed method is based on the Cahn-Hilliard model for the image inpainting. Image inpainting is the process of reconstructing lost parts of images based on information from neighboring areas. We treat the empty region between the two cross sections as inpainting region and use two cross sections as neighboring information. We initialize the empty region by the linear interpolation. We perform numerical experiments demonstrating that our proposed method can generate a smooth 3D solid model from two cross section data.

Image Reconstruction with Prior Information in Electrical Resistance Tomography

  • Kim, Bong Seok;Kim, Sin;Kim, Kyung Youn
    • 전기전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.8-18
    • /
    • 2014
  • Electrical resistance tomography (ERT) has high temporal resolution characteristics therefore it is used as an alternative technique to visualize two-phase flows. The image reconstruction in ERT is highly non-linear and ill-posed hence it suffers from poor spatial resolution. In this paper, the inverse problem is solved with homogeneous data used as a prior information to reduce the condition number of the inverse algorithm and improve the spatial resolution. Numerical experiments have been carried out to illustrate the performance of the proposed method.

이상유동의 동적 전기 임피던스 가시화에 대한 전류패턴의 영향 (Effect of input current patterns on dynamic electrical impedance imaging of two-phase flows)

  • 정순일;;;김신;김경연;김민찬
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.475-478
    • /
    • 2006
  • In electrical impedance tomography (EIT) an array of electrodes is attached on the boundary of an object and small alternating currents are injected through these electrodes, and then the resulting voltages are measured. An estimation for the cross-sectional resistivity distribution in the object is obtained by using these current and voltage data in a nondestructive manner. In this paper, the electrical impedance imaging of two-phase flows undergoing rapid transient is considered with a special emphasis on the effect of the current pattern on the image reconstruction. The trigonometric current pattern, which is commonly used in the conventional static electrical impedance imaging, shows poor performance in case of the dynamic imaging considered in this work. Extensive numerical experiments are conducted with various kinds of current patterns and their effects on the image reconstruction performance are examined.

  • PDF