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WITH A MESH GROUPING TECHNIQUE BASED ON PARTICLE
SWARM OPTIMIZATION

BO AN LEE', BONG SEOK KIM', MIN SEOK KO?, KYUNG YOUN KIM?, and SIN KIM'**
"Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, South Korea
*Department of Nuclear and Energy Engineering, Jeju National University, Jeju 690-756, South Korea
*Department of Electronic Engineering, Jeju National University, Jeju 690-756, South Korea
Corresponding author. E-mail : sinkim@jejunu.ac.kr

Received May 15, 2013
Accepted for Publication September 06, 2013

An electrical resistance tomography (ERT) technique combining the particle swarm optimization (PSO) algorithm with
the Gauss-Newton method is applied to the visualization of two-phase flows. In the ERT, the electrical conductivity
distribution, namely the conductivity values of pixels (numerical meshes) comprising the domain in the context of a
numerical image reconstruction algorithm, is estimated with the known injected currents through the electrodes attached on
the domain boundary and the measured potentials on those electrodes. In spite of many favorable characteristics of ERT such
as no radiation, low cost, and high temporal resolution compared to other tomography techniques, one of the major
drawbacks of ERT is low spatial resolution due to the inherent ill-posedness of conventional image reconstruction
algorithms. In fact, the number of known data is much less than that of the unknowns (meshes). Recalling that binary
mixtures like two-phase flows consist of only two substances with distinct electrical conductivities, this work adopts the PSO
algorithm for mesh grouping to reduce the number of unknowns. In order to verify the enhanced performance of the
proposed method, several numerical tests are performed. The comparison between the proposed algorithm and conventional
Gauss-Newton method shows significant improvements in the quality of reconstructed images.

KEYWORDS : Electrical Resistance Tomography, Binary Mixture, Two-phase Flow, Mesh Grouping, Particle Swarm Optimization, Gauss-Newton Method

1. INTRODUCTION including no ionization radiation, low cost, and high
temporal resolution compared to other methods. In this
work, the electrical resistance tomography (ERT) technique

is considered. The ERT uses the fact that the measured

Binary mixtures, like two-phase flow, are frequently
encountered in various engineering systems. For example,

in the chemical, oil, and nuclear industries, binary mixtures
of chemical substances, oil-water, oil-air, steam-water are
commonly observed in a single component. The information
on the distribution of each substance is necessary in the
design, the performance analysis, and the monitoring of
the system. Especially, two-dimensional information on
phase distribution in two-phase flow fields would be more
favorable for theoretical model development and verification
of CFD (Computational Fluid Dynamics) codes, since the
two-phase flow phenomena are essentially multi-dimensional.

Many two-dimensional imaging methods like radiation
absorption and scattering method [1], optical method [2],
ultra sound method [3] and electrical methods [4] have
been developed. Among these, electrical methods such as
electrical resistance tomography (ERT) and electrical
capacitance tomography (ECT) have favorable advantages,
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potentials on the electrodes attached on the domain boundary
are dependent on the internal electrical conductivity dis-
tribution, or the phase distribution, for the given electrical
currents through those electrodes. Based on the known
injected currents and the measured potentials, the con-
ductivity distribution is reconstructed with the aid of the
ERT image reconstruction algorithm.

In the numerical algorithm, the problem domain is
discretized into many small meshes (pixels) and each
mesh is assumed to have a constant conductivity value.
The phase distribution is approximated as the conductivity
values of many meshes. The image reconstruction algorithm
estimates the conductivity value in each mesh. The image
reconstruction algorithm, so called the inverse algorithm,
searches the optimal distribution of the conductivity values,
minimizing the objective functional, that is the difference
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between the measured potentials and the calculated poten-
tials, by solving the governing equation with the assumed
conductivity distribution and the boundary condition. In
this, the potential distribution is computed numerically
using usually the finite element method (FEM).

As the inverse algorithm to minimize the objective
functional, the Gauss-Newton (GN) method is widely
accepted [5]. However, the number of unknowns or meshes
is much more than the number of current-potential data sets.
Hence, the ERT image reconstruction is an inherently ill-
posed problem. These characteristics result in low spatial
resolution, which is the major drawback of the ERT.

For binary mixtures like two-phase flows in which there
are only two distinct conductivity values, the number of
unknowns can be reduced significantly and two approaches
have been proposed. One is the mesh grouping approach
and the other is the boundary estimation approach. The
boundary estimation approach estimates the interface
between the background and the secondary substances
directly, not the conductivity distribution [6-11]. In this,
the interfacial boundary should be properly parameterized
with a few numbers of unknowns. Also, the mesh structure
should be updated after each iteration step. In the mesh
grouping approach, on the other hand, a number of meshes,
which can be categorized into one of the substances, are
grouped and each group is assumed to have a same con-
ductivity value [4, 12-15]. As a result, the number of
unknowns can be reduced significantly. Glidewell and Ng
[12] proposed a two-step approach in electrical impedance
imaging for medical tomography. In the first step, the
anatomical information was obtained through the magnetic
resonance imaging (MRI) data, and in the second step
with this prior information, the internal configuration
was preset and the meshes were grouped. Cho et al. [13]
firstly introduced an adaptive mesh grouping algorithm
to the ERT, in which the grouping criteria were determined
by using the genetic algorithm and fuzzy set theory. Later,
M.C. Kim et al. [14] employed the genetic algorithm only
to determine the grouping criteria. K.Y. Kim et al. [15]
suggested utilizing the predetermined threshold among
the groups based on the best homogeneous resistivity
value, and compared its performance with the grouping
method based on the genetic algorithm. Recently, B.S. Kim
et al. [16] applied the Otsu’s method to select the optimal
threshold.

This work proposes a new adaptive mesh grouping
algorithm combining the particle swarm optimization (PSO)
algorithm with the GN method for the improvement of
spatial resolution. In this technique, the meshes are cat-
egorized into two groups: the background and the remnant
groups. The PSO algorithm is used for the determination
of the threshold between the groups and the representative
conductivity value of the background group. Compared
to the previous grouping algorithms like genetic algorithm
and fuzzy set theory, the PSO, which is a recently developed
evolutionary optimization algorithm, is easy to understand
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its concept and much simpler to implement, even with
comparable optimization performance.

This paper consists of four parts. After the introduction,
the 2™ section, the FEM formulation and the mathematical
statement for the GN method are introduced. In the 3rd
section, a mathematical demonstration for a proposed
element grouping technique is described. In the 4th section,
several numerical simulation results for the verification
of the proposed algorithm are provided.

2. MATHEMATICAL MODEL

In general, the ERT is composed of the forward and
the inverse problems. The process to obtain the potential
distribution by solving the governing equation, subject to
the given electrical conductivity values and boundary
conditions, is called the forward problem, and the inverse
problem is described as the process to estimate the internal
conductivity distribution based on the measured voltages
and the injected currents on the electrodes. A schematic
flowchart is given in Fig. 1.

2.1 Forward Problem

When electrical currents /, are injected into the problem
domain Q CR? through the ¢th electrode e, attached on the

)

v

Initial guess o,

v

Iteration
Forward solution on Egs. (1)~(5)
Updating o on Eq. (14)
v

Mesh grouping on Egs. (18)~(21)

v

Updating ¢ on Eq. (22)

\ 4

Convergence
check

)

Fig. 1. Flowchart of Proposed Algorithm.
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boundary 0, and the conductivity distribution o (x, y) is
known over the domain, the corresponding electrical poten-
tial u (x, y) in Q can be determined uniquely from the partial
differential equation of the form:

in Q. (@)

The boundary conditions are given by

V-(oVu)=0

ou
é[o-gdS:Iﬁ on e, /¢=1,2,---,L, %)
0
a2 -0 on 0Q,, 3
ov
ou
u+z[aa—:U£ on e, £=1,2,--,L, (@)
v

where 0Q = Z e, + 0Q, and L is the number of electrodes.

The 1nsu1ated boundary between electrodes is denoted by
0€),. v stands for the outward normal unit vector on the
surface OS2, z, is the contact impedance, and U, is the mea-
sured boundary potential on the ¢ th electrode. Equation
(4) is called the complete electrode model (CEM) which
takes into account the discreteness and the shunting effect
of the electrodes, and the contact impedance between the
electrodes and the substance in Q. In addition, the following
two constraints for the injected currents and the measured
electrode potentials should be imposed to ensure the exis-
tence and uniqueness of the solution:

iU/ =0 and il, =0. 5)
=1 =1

In this study, we use the finite element method (FEM)
to obtain the numerical solution to the forward problem.
In the context of FEM, the problem domain is discretized
into sufficiently small triangular elements having a node
at each corner, and it is assumed that the conductivity
distribution is constant within each element [17]. The finite
element formulation in a matrix form can be written as:

Ab=T 6)

where

Ay won) Pg) T2 @

In this, N is the number of nodes, a. = (i, o,---, o)
e R ! is the voltage vector defined at the nodes, p = (B,
Boyeo+, Bra) €RED* s the reduced electrodes voltages, and
0 €™ ! Here, the first constraint of (5) can be automatically
satisfied by introducing the reduced voltage vector § and
the mapping matrix N

(I 1
-1 0 0

N=[0 -1 0 eR-E ®
0 0 -1
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instead of the electrode voltage vector U = (U, Us,---, U,)"
= NB EERLX 1. AISO, C = (I] — Iz, I] — 13," Yy I] — IL)TE %(Lil)x !
is the reduced current vector. The elements of stiffness matrix
A are of the form

B(i, /) jaws V¢dQ+z j¢¢ds i,j=1,2,

/If

>N, (9)

C(Z .] = J.¢ldS i:1929'”9N7 j:1527"'5L5 (10)
Zj e;
0 i#j

D(l,]) = H l:]’ ”,] :1727"'7L9 (11)
Zj

where ¢ is the two-dimensional first order basis function
and | ¢ | is the area of the electrode e;.

2.2 Inverse Problem

Generally, the image reconstruction in the ERT becomes
a problem of finding o that minimizes the objective func-
tional defined as:

(o :—[V U(o ] [V-U(o)], (12
where V' is the measured potential and is the calculated
potential with the assumed o.

Due to the ill-conditioning of the ERT inverse problem,

regularization is usually introduced and the objective
functional to be minimized is modified as

o(0)=3 [V -U(@)] [V -U(e)]
+§[R(o-—0'*ﬂr |:R(O’—O'*):|,

where R is the regularization matrix, A is the regularization
parameter, and o is the prior information on the conductivity
vector [14].

In this work, we employ the implicitly scaled Levenberg-
Marquardt regularization scheme as the regularization
method[ 18], and set the prior information to the conductivity
at the previous iteration step since no prior is available.
Hence, the iterative equation for updating the conductivity
vector is derived as

(13)

A =c™ -¢' = [JTJ + ﬂdiag(JTJ)T J' [V -U (6")], (14

where o'e " ! is the conductivity vector at the ith iteration
and E is the number of elements. The Jacobian matrix J €
M £ is defined as

ou,

=L, i=1,2,
" Oo,

,E and j=12,---,L. (15
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3. ELEMENT GROUPING TECHNIQUE BASED ON PSO

The conventional GN algorithm is widely accepted as
an inverse algorithm in the ERT, due to its robustness and
relatively good performance. Even with a few iterations
it can reconstruct the outline of the conductivity distribution.
However, the objective functional tends not to be minimized
further with more iterations and the spatial resolution is
improved no more. This is one of the major drawbacks in
the conventional inverse algorithms and results in poor
spatial resolution in reconstructed images.

In order to improve the spatial resolution, this work
introduces a mesh grouping approach. The mesh grouping
can be a useful approach, especially when the ERT is
applied to the domain composed of two substances with
distinct conductivity values, like two-phase flows. During
the iterations for the image reconstruction, by grouping
the meshes that can be categorized as the same substance
(background fluid or secondary fluid), the number of meshes
reduces substantially and the reconstruction performance
can be enhanced. There have been several strategies to
categorize the meshes, as reviewed in Section 1. This work
adopts the particle swam optimization (PSO) algorithm.
This is applied after a few iterations with the GN algorithm,
since for the first several iterations the GN shows a good
performance.

The PSO algorithm is a computational method for
optimization, by simulating the social behavior of bird
flocking and their means of information exchange to search
for their destination (optimal solution) [19]. In the PSO, a
population of birds (particles) with random information
(solutions) is initially guessed. Then, each particle moves
through the solution space with a random velocity. The
particle is guided to its best solution so far, and at the same
time to the global best solution of the whole population so
far. This process is repeated until the solution is sufficiently
optimized.

This algorithm can be described as follows:

Vin=a®v,+5@w® (me/ =X ) +5,®w,® (p(ihe,\'l_ X ), (16)

Xt = X TV a7

where v, € "™ ! is the velocity vector and x,€ R™ ' the
solution vector when 7 is the number of particles. The
symbol ® denotes element-by-element vector multiplica-
tion. w; and w, are the random numbers usually uniformly
selected in the range [0, 1]. At the iteration step £ + 1, the
velocity vi. is updated on the basis of the current velocity
weighted by a momentum factor a, the strength of the
attraction to the local best solution of the current particle
(Prsest), and to the global best solution in the whole pop-
ulation (Peee) by the coefficient b, and b,. The performance
of the PSO is affected by the selection of the parameters
a, by and b,. Trelea [20] derived a graphical parameter
selection guideline and recommended a = 0.6 and b, = b,
=b=1.7.
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The conceptual basis for image reconstruction with the
mesh grouping using the PSO algorithm is summarized in
Fig. 2. Figures 2(a) and (b) show a typical reconstructed
image and the sorted conductivity curve in ascending order
from the GN method, respectively. It is assumed that the
background substance is much more conductive than the
secondary substance. Ideally, the sorted conductivity profile
should look like a step, since there are only two distinct
conductivity values. At least, the profile should have two
plateaus representing two substances and a connecting
region with the conductivity values between the two, due
to the interface-crossing meshes in the sense of the numerical
analysis. In practice, as can be seen in Fig. 2(b) however,
we cannot expect to get a well-distinguished conductivity
profile, since the inverse estimation will not be perfect and
there are always meshes crossing the interface between
two substances.

In the mesh grouping, the conductivity values like
Fig. 2(b) are classified into two different representative
groups, i.e. the background and the secondary groups,
and a representative conductivity value of each group is
determined. Let &: (i = 1, 2) be the averaged values of each
group and m be the boundary index between the groups.
Then, we can formulate the following optimization problem
to determine o; and m.

Find

X =(5,,5,,m) (18

x 10°

35

}

.

.
(@

Group 1 Group 2

J

Sorted conductivity (SC )

ko K,
0 1 60 260 360 460 560 660 760 860 960
j
(b)

Fig. 2. Results for Conventional Reconstruction Algorithm: (a)
Reconstructed Conductivity Distribution and (b) Conductivity
Distribution in Ascending Order Obtained after 30 Iterations

with GN Algorithm.
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to minimize

m 9 E 9
f(X):ZI:(&j_El) + 'Zl(6j_52) 19

j= j=m+
where, X is the candidate solution, 6;(6;< Gj+1,J=1,2---, F
— D)is the sorted conductivity values in ascending order,
and FE is the total number of meshes (or unknown con-
ductivity values). The optimization problem of Eq. (19)
is solved by the PSO algorithm. In this study, we divide
the groups into two groups, namely the background group
(BG) and the remnant group (RG), which may include
the meshes corresponding to the secondary fluid and the
meshes crossing the interface. After the mesh grouping,
the Jacobian matrix for the grouped meshes is modified
as the following equation:

JG — JG c iRLx(m-%—l) , (20)

where G is the grouping matrix. The grouping matrix is
obtained by

G= I:GRG Gpa ]’ (21

where the Gro€ RF* " matrix extracts the meshes belonging
to the RG, and the location of the meshes when their con-
ductivity values are sorted in ascending order within the
RG. Gze R™ ! is the vector of the meshes belonging to
the BG, and the meshes of the BG are regarded as a single
mesh with the same conductivity during the iteration. Hence,
the number of unknowns is reduced from E to m + 1.

Once the grouping is applied, the meshes are rearranged
and grouped, and then the conductivity increment of the
grouped meshes should be modified as:

Ao =[5, + Adiag(T2T,) ] TE[V-UG)]. (22

In the mesh grouping, as pointed out by Cho et al. [13],
once the meshes are grouped improperly, the reconstruction
performance may be deteriorated inadvertently. To remedy
this wrong grouping, they suggested using the GN only
without grouping after a certain number of iterations with
the grouped meshes. In doing so, improperly grouped
meshes can escape from the wrong group and acquire a
chance to alter their conductivity values toward the min-
imization of the objective functional.

4. NUMERICAL EXPERIMENTS

In numerical experiments, two different meshes were
used for the prevention of the inverse crime, as shown in
Fig. 3 [21]. If the same mesh structure is used for the gen-
eration of the simulated measurement data and the image
reconstruction, the reconstruction error may be canceled
out unintentionally. A mesh structure with 2002 elements
for the forward problem and another mesh structure with
840 elements for the inverse problem were used, respectively.
For numerical simulations, a circular pipe with a 4 cm
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radius was considered. It was assumed that 16 electrodes
with 0.6 cm width were installed evenly on the boundary,
and these were illustrated as bold lines in Fig. 3. Two
adjacent electrodes were selected as a source and a sink,
while others were insulated. This current injection protocol
was applied sequentially. The magnitude was 10 mA.

For the verification of the performance of the proposed
algorithm, it was compared with the conventional GN
method without grouping for 4 different two-phase flows,
which could occur in horizontal pipes. The PSO was applied
after 5 GN iterations without the mesh grouping, and to
prevent improper grouping, after every 5 iterations the
GN was solely applied without grouping.

In order to quantitatively investigate the estimation
performance, the following root-mean-square error was
introduced.

RMSE _ \/(O-true

T
- o-est) (Gtrue

O_T

true ™~ true

=
cond e“) (23)
where 0. and o.; were the original conductivity vector
and estimated conductivity vector, respectively.

As the first scenario, a two-phase stratified flow was
considered. Figure 4(a) shows the true conductivity dis-
tribution for the stratified flow, and Figs. 4(b) and (c)
indicate the reconstructed conductivity distributions by the
conventional GN method only, and by the proposed method

Fig. 3. Mesh Structures for (a) Forward Solver and (b) Inverse
Solver.
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combining the GN and the PSO method, respectively. The
comparison between two different methods implies that
the reconstruction performance of the proposed method
is much better than the conventional GN method in terms
of the image quality. Also, as can be seen in Fig. 5, the

(b)

©

Fig. 4. Stratified Interface in the Domain: (a) True, (b) GN
Only and (c) GN with Element Grouping Method.

0.7
% Gauss-Newton
* proposed algorithm
0.6 1
*
B 05p ¥
wd *
Q *
2 *
&2 04f ¥y 1
* ThsrsopricRioreReoor
03t ey
0.2 . . .

0 5 10 15 20 25 30 35
Iterations

Fig. 5. The RMSE Values from the Conventional GN and the
Proposed Algorithm for the Stratified Interface.
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corresponding RMSE values support this numerical trend
(0.38 for the GN method, 0.25 for the proposed method
after 35 iterations). According to Figs. 6 and 7, for a wavy
interface case, the proposed method still shows a much
better performance. For a distorted gas core case, as given

(®)

©

Fig. 6. Wavy Interface in the Domain: (a) True, (b) GN Only
and (c¢) GN with Element Grouping Method.

0.65

% Gauss-Newton

0.61 * proposed algorithm
*

0.55¢
*
0.5r %

*

cond

0.451

RMSE

*hx
047 '*%K* ]
: * LRk ko

0.35¢ .

0.3 °

0 250 5 10 15 20 25 30 35

Iterations

Fig. 7. The RMSE Values from the Conventional GN and the
Proposed Algorithm for Wavy Interface.
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in Figs. 8 and 9, and for an elongated bubble case as given 5. CONCLUSIONS
in Figs. 10 and 11, the proposed method successfully dif-

ferentiates the boundary of the air/vapor region from the We introduced a new image reconstruction algorithm
background medium, while the conventional GN method  combining the GN method with the PSO algorithm for
gives the rough shapes for both cases. the visualization of two-phase flows. For the verification

1 1
08, 0.9
0.8 08
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
1 1
09 0.9
058 0.8
07 0.7
06 06
05 05
0.4 0.4
03 03
02 0.2
0.1 0.1
1
0.9
0.
0.8
o
0.7
0.
0.6
0.
05
0.
0.4
0.
03
0.
0.2
0.
0.1
0.1
©

©

®

3

>

@

=

©

~

Fig. 8. Distorted Gas Core in the Domain: (a) True, (b) GN Fig. 10. Elongated Bubble in the Domain: (a) True, (b) GN
Only and (c) GN with Element Grouping Method. Only and (c) GN with Element Grouping Method.
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Fig. 9. The RMSE Values from the Conventional GN and the Fig. 11. The RMSE Values from the Conventional GN and the
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of the performance of the proposed technique several
numerical experiments were conducted. In numerical tests,
the proposed one was compared to the conventional GN
algorithm. The comparison showed that the proposed
technique significantly improved the image reconstruction
performance.
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NOMENCLATURE

Stiffness matrix
Number of elements
Grouping matrix
Electrical current
Jacobian matrix
Number of electrodes
Number of nodes
Mapping matrix
Regularization matrix
Boundary potential
Measured potential
Candidate solution
Electrical potential
Contact impedance

NeEeXsgrZzZzbSTaE>

Greek Letters

o Conductivity distribution

Q Problem domain

a Voltage vector defined at the nodes

p Reduced voltage vector

C Reduced current vector

¢ Two-dimensional first order basis function
o Objective function

A Regularization parameter

o Prior information on the conductivity vector
Vi Velocity vector

Xk Solution vector

G Sorted conductivity values

Orrue Original conductivity vector

Ocst Estimated conductivity vector
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