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ABSTRACT. In this paper, we present an implicit method for reconstructing a 3D solid model

from two 2D cross section images. The proposed method is based on the Cahn–Hilliard model

for the image inpainting. Image inpainting is the process of reconstructing lost parts of im-

ages based on information from neighboring areas. We treat the empty region between the

two cross sections as inpainting region and use two cross sections as neighboring information.

We initialize the empty region by the linear interpolation. We perform numerical experiments

demonstrating that our proposed method can generate a smooth 3D solid model from two cross

section data.

1. INTRODUCTION

Medical imaging, such as computerized tomography (CT), has greatly increased the infor-

mation available to surgeons and becomes one of the most important diagnostic methods [1].

Medical imaging devices produce three-dimensional medical data in the form of image slices.

In such slice images, the distance between consecutive slices is larger than the size of one pixel

of medical images [2].

To process medical imaging, there have been proposed many interpolation techniques. Among

them, the simplest one is using linear interpolation with gray scale slices [3, 4, 5, 6]. Grevera

and Udupa [7] proposed a shape-based interpolation method to multidimensional grey-level

images. The basic idea of the method consists of first segmenting the given slice image data

into a binary image data, second converting the binary image into a signed distance image

data wherein the point value represents its shortest distance, i.e., positive value for points of

the object and negative for those outside from the cross-sectional boundary. The first step,

called lifting step, transform n-dimensional grey scene to an (n+1)-dimensional binary scene.

Priorly, the method has been usually applied to binary data. To extend the idea to gray-level

images, they used the density distribution of the scene. In the final step, called collapsing step,
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(n+ 1)-dimensional binary scene generated by previous processes is inversely transformed to

n-dimensional grey scene. This method is considered as both scene- and object-based method.

The shape-based interpolation method was also studied in [8].

Guo et al. [1] developed a morphology-based interpolation method by means of a combined

operation of weighted dilation and erosion to overcome drawbacks of a shaped-based inter-

polation method. The significant advantage of the method is that the interpolation could be

successful when two given objects are disjointed. It has been considered as the drawback in

methods based on mathematical morphology. There are three major steps in its algorithm: (i)

make the source and target objects be overlapped on one image, (ii) derive dilation and erosion

vectors at contour of source image and (iii) Determine the size of structure and apply dilation or

erosion process. However, this method has still heavy computational cost and is not able to han-

dle heavy invaginated objects [9]. Lee and Wang proposed another kinds of morphology-based

interpolation method in [10]. Their method gave both reduced computational cost significantly

and flexibility of interpolating three-dimensional structure.

Moreover, Lee and Lin [2] proposed a feature-guided shape-based image interpolation scheme

which integrates feature line-segments to guide the shape-based method for better shape inter-

polation. Their proposed method is able to carry out basic image modification such as transla-

tion, rotation and scaling when given initial images are similar. Also, the scheme is also valid

to dissimilar images.

There are two classification in reconstruction method: explicit and implicit surface methods.

The explicit surface method prescribes the surface geometry in an explicit manner. Whereas,

the implicit surface method uses a scalar function and present the surface using a zero level set

of the function.

In this paper, we propose a fast and accurate implicit numerical method of a partial differen-

tial equation based mathematical model for the three-dimensional volume reconstruction from

two slice data.

This paper is organized as follows. In Section 2, we describe the governing equations for the

image segmentation and the volume reconstruction. Section 3 describes a numerical scheme for

the volume reconstruction. In Section 4, we perform some characteristic numerical experiments

with synthetic and real medical images for volume reconstruction. Finally, our conclusion is

given in Section 5.

2. RECONSTRUCTION PROCESS

To reconstruct a three-dimensional volume from a set of slice data, we consider the following

Cahn–Hilliard equation [11]:

∂φ(x, t)

∂t
= Δμ(x, t), x ∈ Ω, 0 < t ≤ T, (2.1)

μ(x, t) = F ′(φ(x, t))− ε2Δφ(x, t), (2.2)

where x = (x, y, z) is the three-dimensional coordinate, Ω ⊂ R
3 is a domain, φ(x, t) is a

phase-field, which is defined as 1 and −1 in the inside and outside of the reconstructed volume,

and F (φ) = 0.25(1− φ2)(1 + φ2). The surface of the volume is represented by the zero level
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set of φ. Let φtop(x, y) and φbottom(x, y) be the top and the bottom section data on slices S2

and S1, respectively (see Fig. 1).

S2

S1

.

.

.

FIGURE 1. Schematic of slice data

The initial condition is the linear interpolation from two slice data:

φ(x, y, θz2 + (1− θ)z1) = θφtop(x, y) + (1− θ)φbottom(x, y), 0 ≤ θ ≤ 1. (2.3)

Dirichlet boundary condition is applied to φ and homogeneous Neumann boundary condi-

tion is used to μ, i.e., n · ∇μ = 0 on ∂Ω. Here, n is the unit normal vector to the domain

boundary ∂Ω. From the boundary condition of μ, there is a constraint condition:
∫
Ω φ is con-

stant. Equations (3.1) and (3.2) is a gradient flow using an H−1 norm from the following total

energy functional [12]:

E(φ) =
∫
Ω

[
F (φ(x, t)) +

ε2

2
|∇φ(x, t)|2

]
dx. (2.4)

Detailed description of physical, mathematical, and numerical aspects of view can be shown

in [14]. We use the idea from the image inpainting problems [15] and volume reconstruction

problem [13]. The major difference comparing the previous work in [13] is that we do not use

a fidelity term. See [12] to details of a fidelity term.

However, we do not use a fidelity term as used in the previous work [12]. Instead, we use a

Dirichlet type boundary condition.

3. NUMERICAL SOLUTION

For the temporal discretization, we use the unconditionally gradient stable Eyre’s scheme

[16, 17]. We discretize the governing Eqs. (2.1) and (2.2) in three-dimensional space, Ωd =
(0, Lx) × (0, Ly) × (0, Lz). Let xi = (i − 0.5)h, yj = (j − 0.5)h, zk = (k − 0.5)h,

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz , where Nx, Ny, and Nz are integers and h = Lx/Nx =
Ly/Ny = Lz/Nz is the uniform mesh size. Let φn

ijk be an approximation of φ(xi, yj , zk, nΔt),

where Δt = T/Nt is the time-step, T is the final time, and Nt is the total number of time-steps.
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Then, we have the following discretization:

φn+1
ijk = φn

ijk +Δt

(
μn+1
i+1,jk + μn+1

i−1,jk

h2

+
μn+1
i,j+1,k + μn+1

i,j−1,k + μn+1
ij,k+1 + μn+1

ij,k−1 − 6μn+1
ijk

h2

)
, (3.1)

μn+1
ijk = (φn+1

ijk )3 − φn
ijk − ε2

(
φn+1
i+1,jk + φn+1

i−1,jk

h2

+
φn+1
i,j+1,k + φn+1

i,j−1,k + φn+1
ij,k+1 + φn+1

ij,k−1 − 6φn+1
ijk

h2

)
. (3.2)

We solve the discrete system of Eqs. (3.1) and (3.2) by using a Gauss–Seidel iteration. It

should be remarked that since we use the Gauss–Seidel iteration there is no restriction on the

number of Nz , unlike in the multigrid method which has a better performance in a computa-

tional point of view.

Let φn+1,m
ijk and μn+1,m

ijk be m-th iterations of the Gauss–Seidel relaxation. Note that φn+1,m
ij

for i = 1, Nx, j = 1, Ny, and k = 1, Nk are not updated by the Gauss-Seidel relaxation

because of its Dirichlet boundary condition. To describe a Gauss–Seidel iteration process,

we first define the source term as (ϕn
ijk, ψ

n
ijk) =

(
φn
ijk/Δt,−φn

ijk

)
. Linearizing (φn+1

ijk )3 at

φn+1,m
ijk , we get (φn+1

ijk )3 ≈ (φn+1,m
ijk )3 + 3(φn+1,m

ijk )2(φn+1
ijk − φn+1,m

ijk ). Then, we can rewrite

Eqs. (3.1) and (3.2) as follows:

φn+1,m+1
ijk

Δt
+

6μn+1,m+1
ijk

h2

= ϕn
ijk +

(
μn+1,m
i+1,jk + μn+1,m

i−1,jk + μn+1,m
i,j+1,k + μn+1,m

i,j−1,k + μn+1,m
ij,k+1 + μn+1,m

ij,k−1

h2

)
,(3.3)

and

−3

(
2ε2

h2
+ (φn+1,m

ijk )2
)
φn+1,m+1
ijk + μn+1,m+1

ijk = ψn
ijk − 2(φn+1,m

ijk )3

−ε2

(
φn+1,m
i+1,jk + φn+1,m

i−1,jk + φn+1,m
i,j+1,k + φn+1,m

i,j−1,k + φn+1,m
ij,k+1 + φn+1,m

ij,k−1

h2

)
. (3.4)

One Gauss–Seidel iteration consists of solving the linear system (3.3) and (3.4) by inversion of

2 × 2 matrix for each i, j and k. This process will stop when the number of iteration is over

50 since it is practically enough, i.e., more number of iteration does not affect to the result,

or ∞-norm of error ||φn+1,m+1
ijk − φn+1,m

ijk ||∞ is less than a given tolerance, 10−5. We update



3D VOLUME RECONSTRUCTION FROM TWO PLANAR CROSS SECTIONS USING CAHN–HILLIARD 51

values at the top and bottom sections using the following weighted average:

φn+1
ij1 = αφ0

ij1 + (1− α)(2φn+1
ij2 − φn+1

ij3 ), (3.5)

φn+1
ijNz

= αφ0
ijNz

+ (1− α)(2φn+1
ij,Nz−1 − φn+1

ij,Nz−2), (3.6)

where the weighted average constant α ∈ [0, 1].
We adaptively adjust the temporal step size Δt. If the number of Gauss-Seidel iterations is

less than or equal to 3, then we double the size. While the number of iterations is bigger than 3,

we divide the size in halves. From this adaptive time method, we can reduce a computational

cost in the time interval whose error is small enough or have more accuracy in the time interval

whose error is too large.

4. NUMERICAL TESTS

In this section, we perform several numerical experiments to demonstrate the performance

of our proposed scheme. Across the interfacial transition region, the concentration field varies

from −0.9 to 0.9 over a distance of approximately 2
√
2ε tanh−1(0.9). Therefore, if we want

this value to be approximately m grid points, the ε value needs to be taken as follows: εm =
hm/[2

√
2 tanh−1(0.9)] [18]. To overcome the phenomenon called “spontaneous shrinking”,

which would make unnatural reconstructed shapes, we consider the diffused initial condition.

If the spontaneous shrinking happens, a zero contour shrinks spontaneously while the phase-

variable φ shifts from its expected values in the bulk phases even though φ is conserved globally

[19]. Let εm be the coefficient we want to use, then we give an initial condition as φ0(x) =
tanh(x/(

√
2ε2m) rather than tanh(x/(

√
2εm). Unless otherwise specified, we will stop the

numerical computations after 100 time step iterations and parameters ε4, time step Δt = h,

and Nz = 7 are used.

4.1. Energy decreasing. We first check energy decreasing with time in discrete sense before

performing numerical simulations for volume reconstruction. From (2.4), the discrete energy

Eh(φ) can be defined as follow:

Eh(φn) =

Nx−1∑
i=1

Ny−1∑
j=1

Nz−1∑
k=1

ε2h3

2

[
(φi+1,jk − φijk)

2 + (φi,j+1,k − φijk)
2 + (φij,k+1 − φijk)

2
]

+

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

F (φn
ijk)h

3. (4.1)

Here, the initial conditions are given as two disks with radii 0.15:

φ0
ij1 = tanh

([
0.15−

√
(xi − 0.3)2 + (yj − 0.5)2

]/
(
√
2ε)

)
,

and

φ0
ijNz

= tanh

([
0.15−

√
(xi − 0.3)2 + (yj − 0.5)2

]/
(
√
2ε)

)
.
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Figure 2 represents the graph of Eh(φn) versus time. The result shows that the discrete energy

functional decreasing holds.

0.2 0.4 0.6 0.8
5.9

6

6.1

6.2

x 10
−3

t

Eh
(φ)

FIGURE 2. Graph of Eh(φn) versus time.

4.2. Effect of weight average constant α. We perform numerical simulations to compare the

effect of weight average constant α in Eqs. (3.5) and (3.6). We choose the slices S1 and S2 as

disks with radii 0.3 and 0.2:

φ0
ij1 = tanh

([
0.3−

√
(xi − 0.4)2 + (yj − 0.5)2

]/
(
√
2ε)

)

and

φ0
ijNz

= tanh

([
0.2−

√
(xi − 0.4)2 + (yj − 0.5)2

]/
(
√
2ε)

)
.

Figure (3) shows the reconstructed isosurface with (a) α = 0.1 and (b) α = 0.5. We can clearly

see that the case with α = 0.5 has much better performance than the other. Consequently, we

set α = 0.5 unless otherwise specified in later simulations.

(a) α = 0.1 (b) α = 0.5

FIGURE 3. Reconstructed isosurface with (a) α = 0.1 and (b) α = 0.5.
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4.3. Oblique cylinder. We observe the 3D reconstruction with two elliptic slices in this sec-

tion. Let S1 and S2 be as follows:

φ0
ij1 = tanh

([
0.2−

√
c(xi − 0.4)2 + 0.5(yj − 0.5)2

]/
(
√
2ε)

)

and

φ0
ijNz

= tanh

([
0.2−

√
c(xi − 0.6)2 + 0.5(yj − 0.5)2

]/
(
√
2ε)

)
,

where c = sin(tan−1(5(Nz − 1)h)). The expected reconstruction result is an oblique cylinder

whose cross section is a circle like x2 + y2 = 0.22 since the initial slices are given as elliptic

shapes. To see a relation of this initial condition and expected 3-dimensional structure, Fig. (4)

can be a helpful schematic.

circle

FIGURE 4. Schematic of an oblique cylinder.

Figure (5) shows the temporal evolution of the reconstructed isosurfaces. The temporal

step size Δt = 0.1h and the final iteration number is 1000. The final isosurface structure is

well-matched to our expectation from a little dented initial isosurface.

(a) Initial (b) 100 iteration (c) 1000 iterations

FIGURE 5. Temporal evolution of the reconstructed isosurfaces.



54 S. LEE, Y. CHOI, D. LEE, H-K. JO, S. LEE, S. MYUNG, AND J. KIM

4.4. Various initial data. We consider four different configurations. The slices S1 and S2 are

given as

(a) Bottom : φ0
ijNz

= tanh

([
0.3−

√
(xi − 0.5)2 + 0.5(yj − 0.5)2

]/
(
√
2ε)

)
,

Top : φ0
ij1 = tanh

([
0.3−

√
0.5(xi − 0.5)2 + (yj − 0.5)2

]/
(
√
2ε)

)
,

(b) Bottom : φ0
ijNz

= tanh

([
0.2−

√
(xi − 0.5)2 + (yj − 0.5)2

]/
(
√
2ε)

)
,

Top : φ0
ij1 =

1

2

[(
tanh

(
[x− 0.15]

/
(
√
2ε)
)
− tanh

(
[x− 0.85]

/
(
√
2ε)
))

×
(
tanh

(
[y − 0.15]

/
(
√
2ε)
)
− tanh

(
[y − 0.85]

/
(
√
2ε)
))

− 1
]
,

(c) Bottom : φ0
ijNz

= tanh

([
0.3−

√
(xi − 0.5)2 + (yj − 0.5)2

]/
(
√
2ε)

)
,

Top : φ0
ij1 = 1 + tanh

([
0.15−

√
(xi − 0.3)2 + (yj − 0.3)2

]/
(
√
2ε)

)

+tanh

([
0.15−

√
(xi − 0.7)2 + (yj − 0.7)2

]/
(
√
2ε)

)
,

(d) Bottom : φ0
ijNz

= tanh

([
0.3−

√
(xi − 0.5)2 + (yj − 0.5)2

]/
(
√
2ε)

)
,

Top : φ0
ij1 = 2 + tanh

([
0.1−

√
(xi − 0.3)2 + (yj − 0.3)2

]/
(
√
2ε)

)

+tanh

([
0.1−

√
(xi − 0.7)2 + (yj − 0.5)2

]/
(
√
2ε)

)

+tanh

([
0.1−

√
(xi − 0.3)2 + (yj − 0.7)2

]/
(
√
2ε)

)
.

In Fig. (6), left columns represent contours of S1 and S2. Right columns represent isosur-

faces reconstructed from respective contours. It is demonstrated that our proposed method has

a good performance of reconstruction with various initial slice data.

5. CONCLUSIONS

In this paper, we presented an implicit method for reconstructing a 3D solid model from

two 2D cross section images. Our proposed model was based on the Cahn–Hilliard equation

used in the image inpainting field. Reconstructing lost parts of images was proceeded based

on information from neighboring areas. As inpainting region, the empty region between the

two cross sections was treated and two cross sections were used as neighboring information.

Linear interpolation was used when initializing the empty region. We performed numerical

experiments demonstrating that our proposed method can generate a smooth 3D solid model
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(a) (b)

(c) (d)

FIGURE 6. Left columns represent contours of S1 and S2. Right columns

represent isosurfaces reconstructed from respective contours.

from two cross section data. Different constant for weighted average was considered for better

performance. Various cases such as oblique cylinder, perpendicular ellipses, circle and square

and branches showed a smooth 3D solid structures. As a future work, we will investigate the

extension of the proposed algorithm to multi-slice cross sections.
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