• Title/Summary/Keyword: Nuclear magnetic resonance (Nmr)

Search Result 543, Processing Time 0.027 seconds

Preliminary Study on Magnetic Resonance Temperature Measurement using Brain-Metabolite Phantom (뇌 대사물질 팬텀을 이용한 뇌의 자기공명 온도측정법에 관한 기초 연구)

  • Han, Yong-Hee;Jang, Moo-Young;Mun, Chi-Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.412-416
    • /
    • 2010
  • In this study, we measured the chemical shift change of metabolite peaks in the brain-metabolite phantom according to the temperature variation using nuclear magnetic resonance(NMR). The temperature range in NMR system was controled from 25 to 80 (5 step) by internal temperature controller. Temperature coefficients of each metabolite peaks were also calculated from the measured chemical shift depending on the temperature. The chemical shift changes depending on temperature were validated by linear regression method for each metabolite peaks. The temperature coefficients of $_{tot}Cr$, Cho, Cr, NAA, and Lac were 0.0086, 0.0088, 0.0091, 0.0089, and 0.0088ppm/$^{\circ}C$, respectively. This study shows that chemical shift change of brain metabolite and temperature variation have linear relationship each other. This also makes authors believe that brain temperature measurement is possible using MR spectroscopic imaging technique.

Bottleneck Behavior of $^1H$ NMR Spin-lattice Relaxation in Ammonium Sulfate

  • Hong, Kwan-Soo;Yu, In-Suk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.132-141
    • /
    • 2002
  • $^1H$ nuclear magnetic resonance (NMR) relaxations have been investigated in ammonium sulfate $((NH_4)_2SO_4)$ power at temperatures ranging form 102 K to 440 K. There is a bottleneck in the spin-lattice relaxation between the nuclear spin system and the hindered rotation of ammonium ions, which is certified by measuring the relaxation according to the initial condition of the spin system. For temperatures below 318 K the $^1H$ spin-lattice relaxations have double-exponential behaviors with the exponent, n, having a value 2>n>1 initially and n=l after a long time. Above 318 K not only is the relaxation exponential initially with exponent n=1, but it is a single-exponential over the entire time, resulting in one $T_1$ value. The two types of $NH_4^+$ ions have different activation energies for hindered rotation, $E_a^1=0.27{\pm}0.02eV$ and $E_a^11=0.12{\pm}0.0eV$, in the ferroelectric phase.

  • PDF

1.5T 자기공명영상기기에서 수소 자기공명분광법을 이용한 모델용액 내 포도당의 정량분석 및 임상적용 가능성에 대한 연구

  • 이경희;이정희;조순구;김용성;김형진;서창해
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.173-173
    • /
    • 2001
  • 목적: 1.5T 생체용 자기공명영상기기를 이용한 수소자기공명분광법으로 용액 내 물질의 정량분석에 대한 가능성을 알아보고자 하였다. 대상 및 방법: 0.01%에서 50%까지의 여러 농도를 갖는 포도당+증류수 혼합액의 모델용액을 만들어 생체용 자기공명영상기기와 시험관 nuclear magnetic resonance (NMR) 분광기에서 각각 수소 자기공명분광법을 시행하여 스펙트럼을 얻었다. 또한 12명의 당뇨환자에서 방광내의 소변에 대해 생체용 자기공명영상기기에서 스펙트럼을 얻고 소변을 추출하여 시험관 NMR 분광기에서 수소자기공명분광법을 시행하였다 각각의 방법으로 얻은 스펙트럼 상에서 포도당 농도에 따른 포도당/물 피크의 면적 비의 변화를 구하였고, 통계처리는 상관분석과 단순선형회귀분석을 시행하였고 회귀식을 산출하였다. 또한 생체용 자기공명영상기기를 이용하여 얻은 결과가 객관적인지 알아보기 위해 시험관 NMR 분광기에서 얻은 결과와의 상관관계를 분석하였다.

  • PDF

Impedance Tomography using Internal Current Density Distribution Measured by Nuclear Magnetic Resonance (자기공명촬영상에서 구한 내부 전류밀도를 이용한 임피던스 단층촬영법)

  • Lee, Su-Yeol;U, Eung-Je;Mun, Chi-Ung
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.413-418
    • /
    • 1994
  • In electrical impedance tomography (EIT), we use boundary current and voltage measurements to provide the information about the cross-sectional distribution of electrical impedance or resistivity One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.7T NMR machine. We implemented a resistivity image reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the image reconstruction algorithm and furture direction of the research.

  • PDF

Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.86-90
    • /
    • 2020
  • Iron-sulfur (Fe-S) clusters are one of the most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S clusters are generated via several distinctive biogenesis mechanisms, among which the ISC (Iron-Sulfur Cluster) mechanism plays a house-keeping role to satisfy cellular needs for Fe-S clusters. The Escherichia coli ISC mechanism is maintained by several essential protein factors, whose structural characterization has been of great interest to reveal mechanistic details of the Fe-S cluster biogenesis mechanisms. In particular, nuclear magnetic resonance (NMR) spectroscopic approaches have contributed much to elucidate dynamic features not only in the structural states of the protein components but also in the interaction between them. The present minireview discusses recent advances in elucidating structural features of IscU, the key player in the E. coli ISC mechanism. IscU accommodates exceptional structural flexibility for its versatile activities, for which NMR spectroscopy was particularly successful. We expect that understanding to the structural diversity of IscU provides critical insight to appreciate functional versatility of the Fe-S cluster biogenesis mechanism.

NMR-based structural characterization of transthyretin in its aggregation-prone state

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.91-95
    • /
    • 2020
  • Transthyretin (TTR) is an abundant protein in blood plasma and cerebrospinal fluid (CSF), working as a homo-tetrameric complex to transport thyroxine (T4) and a holo-retinol binding protein. TTR is well-known for its amyloidogenic property; several types of systemic amyloidosis diseases are caused by aggregation of either wild-type TTR or its variants, for which more than 100 mutations were reported to increase the amyloidogenicity of TTR. The rate-limiting step of TTR aggregation is the dissociation of a monomeric subunit from a tetrameric complex. A wide range of biochemical and biophysical techniques have been employed to elucidate the TTR aggregation processes, among which nuclear magnetic resonance (NMR) spectroscopy contributed much to characterize the structural and functional features of TTR during its aggregation processes. The present review focuses on discussing the recent advances of our understanding to the amyloidosis mechanism of TTR and to the structural features of its monomeric aggregation-prone state in solution. We expect that the present review provides novel insights to appreciate the molecular basis of TTR amyloidosis and to develop novel therapeutic strategies to treat diverse TTR-related diseases.

Recent advances in NMR-based structural characterization of αB-crystallin and its potential role in human diseases

  • Muniyappan, Srinivasan;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2019
  • ${\alpha}B$-crystallin (${\alpha}BC$) is a member of a small heat-shock protein (sHSP) superfamily and plays a predominant role in cellular protein homeostasis network by rescuing misfolded proteins from irreversible aggregation. ${\alpha}BC$ assembles into dynamic and polydisperse high molecular weight complexes containing 12 to 48 monomers; this variable stereochemistry of ${\alpha}BC$ has been linked to quaternary subunit exchange and its chaperone activity. The chaperone activity of ${\alpha}BC$ poses great potential as therapeutic agents for various neurodegenerative diseases. In this mini-review, we briefly outline the recent advancement in structural characterization of ${\alpha}BCs$ and its potential role to inhibit protein misfolding and aggregation in various human diseases. In particular, nuclear magnetic resonance (NMR) spectroscopy and its complimentary techniques have contributed much to elucidate highly-dynamic nature of ${\alpha}BCs$, among which notable advancements are discussed in detail. We highlight the importance of resolving the structural details of various ${\alpha}BC$ oligomers, their quaternary dynamics, and structural heterogeneity.

Comparison of metabolites in rumen fluid, urine, and feces of dairy cow from subacute ruminal acidosis model measured by proton nuclear magnetic resonance spectroscopy

  • Hyun Sang, Kim;Shin Ja, Lee;Jun Sik, Eom;Youyoung, Choi;Seong Uk, Jo;Jaemin, Kim;Sang Suk, Lee;Eun Tae, Kim;Sung Sill, Lee
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective: In this study, metabolites that changed in the rumen fluid, urine and feces of dairy cows fed different feed ratios were investigated. Methods: Eight Holstein cows were used in this study. Rumen fluid, urine, and feces were collected from the normal concentrate diet (NCD) (Italian ryegrass 80%: concentrate 20% in the total feed) and high concentrate diet (HCD) groups (20%: 80%) of dairy cows. Metabolite analysis was performed using proton nuclear magnetic resonance (NMR) identification, and statistical analysis was performed using Chenomx NMR software 8.4 and Metaboanalyst 4.0. Results: The two groups of rumen fluid and urine samples were separated, and samples from the same group were aggregated together. On the other hand, the feces samples were not separated and showed similar tendencies between the two groups. In total, 160, 177, and 188 metabolites were identified in the rumen fluid, urine, and feces, respectively. The differential metabolites with low and high concentrations were 15 and 49, 14 and 16, and 2 and 2 in the rumen fluid, urine, and feces samples, in the NCD group. Conclusion: As HCD is related to rumen microbial changes, research on different metabolites such as glucuronate, acetylsalicylate, histidine, and O-Acetylcarnitine, which are related to bacterial degradation and metabolism, will need to be carried out in future studies along with microbial analysis. In urine, the identified metabolites, such as gallate, syringate, and vanillate can provide insight into microbial, metabolic, and feed parameters that cause changes depending on the feed rate. Additionally, it is thought that they can be used as potential biomarkers for further research on subacute ruminal acidosis.

Backbone NMR assignments of the anti-CRISPR AcrIIA5 from phages infecting Streptococcus thermophilus

  • An, So Young;Kim, Eun-Hee;Bae, Euiyoung;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.70-76
    • /
    • 2020
  • The CRISPR-Cas system provides an adaptive immunity for bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, a single effector protein Cas9 and a guide RNA form an RNA-guided endonuclease complex that can degrade DNA targets of foreign origin. To avoid the Cas9-mediated destruction, phages evolved anti-CRISPR (Acr) proteins that neutralize the host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone 1H, 15N, and 13C resonance assignments of AcrIIA5 that inhibits the endonuclease activity of type II-A Streptococcus thermophilus Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The backbone chemical shifts of AcrIIA5 predict a disordered region at the N-terminus, followed by an αββββαβββ fold.