Browse > Article
http://dx.doi.org/10.6564/JKMRS.2019.23.1.026

Recent advances in NMR-based structural characterization of αB-crystallin and its potential role in human diseases  

Muniyappan, Srinivasan (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.23, no.1, 2019 , pp. 26-32 More about this Journal
Abstract
${\alpha}B$-crystallin (${\alpha}BC$) is a member of a small heat-shock protein (sHSP) superfamily and plays a predominant role in cellular protein homeostasis network by rescuing misfolded proteins from irreversible aggregation. ${\alpha}BC$ assembles into dynamic and polydisperse high molecular weight complexes containing 12 to 48 monomers; this variable stereochemistry of ${\alpha}BC$ has been linked to quaternary subunit exchange and its chaperone activity. The chaperone activity of ${\alpha}BC$ poses great potential as therapeutic agents for various neurodegenerative diseases. In this mini-review, we briefly outline the recent advancement in structural characterization of ${\alpha}BCs$ and its potential role to inhibit protein misfolding and aggregation in various human diseases. In particular, nuclear magnetic resonance (NMR) spectroscopy and its complimentary techniques have contributed much to elucidate highly-dynamic nature of ${\alpha}BCs$, among which notable advancements are discussed in detail. We highlight the importance of resolving the structural details of various ${\alpha}BC$ oligomers, their quaternary dynamics, and structural heterogeneity.
Keywords
${\alpha}B$-crystallin; small heat-shock protein; chaperone; protein structure; NMR spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. S. McHaourab, J. A. Godar, and P. L. Stewart, Biochemistry 48, 3828 (2009)   DOI
2 E. V. Mymrikov, A. S. Seit-Nebi, and N. B. Gusev, Physiol. Rev. 91, 1123 (2011)   DOI
3 R. Van Montfort, C. Slingsby, and E. Vierling, Adv. Protein Chem. 59, 105 (2001)   DOI
4 P. P. Fagerholm, B. T. Philipson, and B. Lindstrom, Exp. Eye Res. 33, 615 (1981)   DOI
5 U. P. Andley, Prog. Retin. Eye Res. 26, 78 (2007)   DOI
6 A. Tardieu, Annu. Rev. Biophys. Biophys. Chem. 17, 47 (1988)   DOI
7 A. Tardieu, Int. J. Biol. Macromol. 22, 211 (1998)   DOI
8 M. Delaye and A. Tardieu, Nature 302, 415 (1983)   DOI
9 T. Iwaki, A. Kume-Iwaki, and J. E. Goldman, J. Histochem. Cytochem. 38, 31 (1990)   DOI
10 T. Iwaki, A. Kume-Iwaki, R. K. Liem, and J. E. Goldman, Cell 57, 71 (1989)   DOI
11 S. L. Shammas, C. A. Waudby, S. Wang, A. K. Buell, T. P. Knowles, H. Ecroyd, M. E. Welland, J. A. Carver, C. M. Dobson, and S. Meehan, Biophys. J. 101, 1681 (2011)   DOI
12 Z. Liu, C. Wang, Y. Li, C. Zhao, T. Li, D. Li, S. Zhang, and C. Liu, J. Biol. Chem. 293, 14880 (2018)   DOI
13 Z. Liu, S. Zhang, D. Li, and C. Liu, Protein Pept. Lett. 24, 315 (2017)   DOI
14 I. Lopez-Gonzalez, M. Carmona, L. Arregui, G. G. Kovacs, and I. Ferrer, Neuropathology 34, 517 (2014)   DOI
15 A. Mainz, J. Peschek, M. Stavropoulou, K. C. Back, B. Bardiaux, S. Asami, E. Prade, C. Peters, S. Weinkauf, J. Buchner, and B. Reif, Nat. Struct. Mol. Biol. 22, 898 (2015)   DOI
16 Z. Ren, M. Yang, Z. Guan, and W. Yu, Curr. Alzheimer Res. 16, 39 (2019)   DOI
17 S. Jehle, P. Rajagopal, B. Bardiaux, S. Markovic, R. Kuhne, J. R. Stout, V. A. Higman, R. E. Klevit, B. J. van Rossum, and H. Oschkinat, Nat. Struct. Mol. Biol. 17, 1037 (2010)   DOI
18 E. M. Crimmins, Gerontologist 55, 901 (2015)   DOI
19 A. V. Belikov, Ageing Res. Rev. 49, 11 (2019)   DOI
20 T. S. Dharmarajan and S. G. Gunturu, Am. Health Drug Benefits 2, 39 (2009)
21 Alzheimer's Association, Alzheimers Dement. 12, 459 (2016)   DOI
22 J. Hardy and D. J. Selkoe, Science 297, 353 (2002)   DOI
23 Y. Huang and L. Mucke, Cell 148, 1204 (2012)   DOI
24 S. M. Ward, D. S. Himmelstein, J. K. Lancia, and L. I. Binder, Biochem. Soc. Trans. 40, 667 (2012)   DOI
25 R. J. Baranello, K. L. Bharani, V. Padmaraju, N. Chopra, D. K. Lahiri, N. H. Greig, M. A. Pappolla, and K. Sambamurti, Curr. Alzheimer Res. 12, 32 (2015)   DOI
26 M. M. Wilhelmus, R. M. de Waal, and M. M. Verbeek, Mol. Neurobiol. 35, 203 (2007)   DOI
27 E. Basha, H. O'Neill, and E. Vierling, Trends Biochem. Sci. 37, 106 (2012)   DOI
28 P. Yan, X. Hu, H. Song, K. Yin, R. J. Bateman, J. R. Cirrito, Q. Xiao, F. F. Hsu, J. W. Turk, J. Xu, C. Y. Hsu, D. M. Holtzman, and J. M. Lee, J. Biol. Chem. 281, 24566 (2006)   DOI
29 A. Ciechanover and Y. T. Kwon, Front. Neurosci. 11, 185 (2017)
30 F. U. Hartl, A. Bracher, and M. Hayer-Hartl, Nature 475, 324 (2011)   DOI
31 M. Haslbeck, T. Franzmann, D. Weinfurtner, and J. Buchner, Nat. Struct. Mol. Biol. 12, 842 (2005)   DOI
32 A. Laganowsky, J. L. Benesch, M. Landau, L. Ding, M. R. Sawaya, D. Cascio, Q. Huang, C. V. Robinson, J. Horwitz, and D. Eisenberg, Protein Sci. 19, 1031 (2010)   DOI
33 A. J. Baldwin, G. R. Hilton, H. Lioe, C. Bagneris, J. L. Benesch, and L. E. Kay, J. Mol. Biol. 413, 310 (2011)   DOI
34 A. J. Baldwin, H. Lioe, C. V. Robinson, L. E. Kay, and J. L. Benesch, J. Mol. Biol. 413, 297 (2011)   DOI
35 S. P. Delbecq, S. Jehle, and R. Klevit, EMBO J. 31, 4587 (2012)   DOI
36 R. Inoue, T. Takata, N. Fujii, K. Ishii, S. Uchiyama, N. Sato, Y. Oba, K. Wood, K. Kato, N. Fujii, and M. Sugiyama, Sci. Rep. 6, 29208 (2016)   DOI
37 Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-Hartl, and F. U. Hartl, Annu. Rev. Biochem. 82, 323 (2013)   DOI
38 J. Lowe, D. R. Errington, G. Lennox, I. Pike, I. Spendlove, M. Landon, and R. J. Mayer, Neuropathol. Appl. Neurobiol. 18, 341 (1992)   DOI
39 S. Jehle, B. S. Vollmar, B. Bardiaux, K. K. Dove, P. Rajagopal, T. Gonen, H. Oschkinat, and R. E. Klevit, Proc. Natl. Acad. Sci. U. S. A. 108, 6409 (2011)   DOI
40 S. Jehle, B. van Rossum, J. R. Stout, S. M. Noguchi, K. Falber, K. Rehbein, H. Oschkinat, R. E. Klevit, and P. Rajagopal, J. Mol. Biol. 385, 1481 (2009)   DOI
41 B. Jovcevski, J. Andrew Aquilina, J. L. P. Benesch, and H. Ecroyd, Cell Stress Chaperones 23, 827 (2018)   DOI
42 R. A. Dubin, E. F. Wawrousek, and J. Piatigorsky, Mol. Cell. Biol. 9, 1083 (1989)   DOI
43 J. Piatigorsky and G. J. Wistow, Cell 57, 197 (1989)   DOI
44 H. Shinohara, Y. Inaguma, S. Goto, T. Inagaki, and K. Kato, J. Neurol. Sci. 119, 203 (1993)   DOI
45 N. Tomokane, T. Iwaki, J. Tateishi, A. Iwaki, and J. E. Goldman, Am. J. Pathol. 138, 875 (1991)
46 G. Esposito, M. Garvey, V. Alverdi, F. Pettirossi, A. Corazza, F. Fogolari, M. Polano, P. P. Mangione, S. Giorgetti, M. Stoppini, A. Rekas, V. Bellotti, A. J. Heck, and J. A. Carver, J. Biol. Chem. 288, 17844 (2013)   DOI
47 T. P. Knowles, C. A. Waudby, G. L. Devlin, S. I. Cohen, A. Aguzzi, M. Vendruscolo, E. M. Terentjev, M. E. Welland, and C. M. Dobson, Science 326, 1533 (2009)   DOI
48 A. Rekas, L. Jankova, D. C. Thorn, R. Cappai, and J. A. Carver, FEBS J. 274, 6290 (2007)   DOI
49 T. M. Treweek, S. Meehan, H. Ecroyd, and J. A. Carver, Cell. Mol. Life Sci. 72, 429 (2015)   DOI
50 C. A. Waudby, T. P. Knowles, G. L. Devlin, J. N. Skepper, H. Ecroyd, J. A. Carver, M. E. Welland, J. Christodoulou, C. M. Dobson, and S. Meehan, Biophys. J. 98, 843 (2010)   DOI
51 E. F. Lim, S. T. Nakanishi, V. Hoghooghi, S. E. Eaton, A. L. Palmer, A. Frederick, J. A. Stratton, M. G. Stykel, P. J. Whelan, D. W. Zochodne, J. Biernaskie, and S. S. Ousman, Proc. Natl. Acad. Sci. U. S. A. 114, E1707 (2017)   DOI
52 K. J. Binger, H. Ecroyd, S. Yang, J. A. Carver, G. J. Howlett, and M. D. Griffin, FASEB J. 27, 1214 (2013)   DOI
53 J. Bhattacharyya, E. G. Padmanabha Udupa, J. Wang, and K. K. Sharma, Biochemistry 45, 3069 (2006)   DOI
54 Y. Kanno and H. Matsuno, Curr. Pharm. Des. 12, 887 (2006)   DOI
55 V. S. Reddy and G. B. Reddy, Curr. Mol. Med. 15, 47 (2015)   DOI
56 R. Bakthisaran, R. Tangirala, and C. M. Rao, Biochim. Biophys. Acta 1854, 291 (2015)   DOI
57 M. Raju, P. Santhoshkumar, and K. K. Sharma, Biochim. Biophys. Acta 1860, 246 (2016)   DOI
58 S. K. Gruvberger-Saal and R. Parsons, J. Clin. Invest. 116, 30 (2006)   DOI
59 J. V. Moyano, J. R. Evans, F. Chen, M. Lu, M. E. Werner, F. Yehiely, L. K. Diaz, D. Turbin, G. Karaca, E. Wiley, T. O. Nielsen, C. M. Perou, and V. L. Cryns, J. Clin. Invest. 116, 261 (2006)   DOI
60 S. P. Delbecq and R. E. Klevit, J. Biol. Chem. 294, 3261 (2019)   DOI