Browse > Article

NMR-based structural characterization of transthyretin in its aggregation-prone state  

Kim, Bokyung (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.24, no.3, 2020 , pp. 91-95 More about this Journal
Transthyretin (TTR) is an abundant protein in blood plasma and cerebrospinal fluid (CSF), working as a homo-tetrameric complex to transport thyroxine (T4) and a holo-retinol binding protein. TTR is well-known for its amyloidogenic property; several types of systemic amyloidosis diseases are caused by aggregation of either wild-type TTR or its variants, for which more than 100 mutations were reported to increase the amyloidogenicity of TTR. The rate-limiting step of TTR aggregation is the dissociation of a monomeric subunit from a tetrameric complex. A wide range of biochemical and biophysical techniques have been employed to elucidate the TTR aggregation processes, among which nuclear magnetic resonance (NMR) spectroscopy contributed much to characterize the structural and functional features of TTR during its aggregation processes. The present review focuses on discussing the recent advances of our understanding to the amyloidosis mechanism of TTR and to the structural features of its monomeric aggregation-prone state in solution. We expect that the present review provides novel insights to appreciate the molecular basis of TTR amyloidosis and to develop novel therapeutic strategies to treat diverse TTR-related diseases.
transthyretin; transthyretin amyloidosis; amyloid; protein aggregation; NMR spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Liz, F. M. Mar, F. Franquinho, and M. M. Sousa, IUBMB Life 62, 429 (2010)   DOI
2 E. A. Kabat, D. H. Moore, and H. Landow, J. Clin. Invest. 21, 571 (1942)   DOI
3 D. R. Soprano, J. Herbert, K. J. Soprano, E. A. Schon, and D. S. Goodman, J. Biol. Chem. 260, 11793 (1985)   DOI
4 C. C. F. Blake and I. D. A. Swan, J. Mol. Biol. 61, 217 (1971)   DOI
5 C. C. F. Blake, M. J. Geisow, S. J. Oatley, B. Rerat, and C. Rerat, J. Mol. Biol. 121, 339 (1978)   DOI
6 J. A. Hamilton and M. D. Benson, Cell. Mol. Life Sci. 58, 1491 (2001)   DOI
7 A. Wojtczak, V. Cody, J. R. Luft, and W. Pangborn, Acta Crystallogr. Sect. D Biol. Crystallogr. 52, 758 (1996)   DOI
8 V. Plante-Bordeneuve and G. Said, Curr. Opin. Neurol. 13, 569 (2000)   DOI
9 J. Rubin and M. S. Maurer, Annu. Rev. Med. 71, 203 (2020)   DOI
10 L. H. Connors, A. Lim, T. Prokaeva, V. A. Roskens, and C. E. Costello, Amyloid 10, 160 (2003)   DOI
11 J. N. Buxbaum and F. L. Ruberg, Genetics in Medicine 19, 733 (2017)   DOI
12 K. Choi, J. M. Seok, B. J. Kim, Y. C. Choi, H .Y. Shin, I. N. Sunwoo, D. S. Kim, J. J. Sung, G. Y. Lee, E. S. Jeon, N. H. Kim, J. H. Min, and J. Oh, J. Clin. Neurol. 14, 537 (2018)   DOI
13 H. H. Schmidt, M. Waddington-Cruz, M. F. Botteman, J. A. Carter, A. S. Chopra, M. Hopps, M. Stewart, S. Fallet, and L. Amass, Muscle and Nerve 57, 829 (2018)   DOI
14 P. P. Costa, A. S. Figueira, and F. R. Bravo, Proc. Natl. Acad. Sci. U. S. A. 75, 4499 (1978)   DOI
15 A. Gustavsson, U. Engstrom, and P. Westermark, Biochem. Biophys. Res. Commun. 175, 1159 (1991)   DOI
16 W. Colon, and J. W. Kelly, Biochemistry 31, 8654 (1992)   DOI
17 Z. Lai, W. Colon, and J. W. Kelly, Biochemistry 35, 6470 (1996)   DOI
18 P. P. Mangione, G. Verona, A. Corazza, J. Marcoux, D. Canetti, S. Giorgetti, S. Raimondi, M. Stoppini, M. Esposito, A. Relini, C. Canale, M. Valli, L. Marchese, G. Faravelli, L. Obici, P. N. Hawkins, G. W. Taylor, J. D. Gillmore, M. B. Pepys, and V. Bellotti, J. Biol. Chem. 293, 14192 (2018)   DOI
19 S. M. Johnson, S. Connelly, C. Fearns, E. T. Powers, and J. W. Kelly, J. Mol. Biol. 421, 185 (2012)   DOI
20 P. Westermark, K. Sletten, B. Johansson, and G. G. Cornwell, Proc. Natl. Acad. Sci. U. S. A. 87, 2843 (1990)   DOI
21 B. I. Leach, X. Zhang, J. W. Kelly, H. J. Dyson, and P. E. Wright, Biochemistry 57, 4421 (2018)   DOI
22 A. W. Yee, M. Aldeghi, M. P. Blakeley, A. Ostermann, P. J. Mas, M. Moulin, D. de Sanctis, M. W. Bowler, C. Mueller-Dieckmann, E. P. Mitchell, M. Haertlein, B. L. de Groot, E. Boeri Erba, and V. T. Forsyth, Nat. Commun. 10, 1 (2019)   DOI
23 H. Razavi, S. K. Palaninathan, E. T. Powers, R. L. Wiseman, H. E. Purkey, N. N. Mohamedmohaideen, S. Deechongkit, K. P. Chiang, M. T. A. Dendle, J. C. Sacchettini, and J. W. Kelly, Angew. Chemie - Int. Ed. 42, 2758 (2003)   DOI
24 S. M. Johnson, R. L. Wiseman, Y. Sekijima, N. S. Green, S. L. Adamski-Werner, and J. W. Kelly, Acc. Chem. Res. 38, 911 (2005)   DOI
25 C. E. Bulawa, S. Connelly, M. DeVit, L. Wang, C. Weigel, J. A. Fleming, J. Packman, E. T. Powers, R. L. Wiseman, T. R. Foss, I. A. Wilson, J. W. Kelly, and R. Labaudiniere, Proc. Natl. Acad. Sci. U. S. A. 109, 9629 (2012)   DOI
26 K. Liu, J. W. Kelly, and D. E. Wemmer, J. Mol. Biol. 320, 821 (2002)   DOI
27 J. Park, U. Egolum, S. Parker, E. Andrews, D. Ombengi, and H. Ling, Ann. Pharmacother. 54, 470 (2020)   DOI
28 L. C. De Palmieri, L. M. T. R. Lima, J. B. B. Freire, L. Bleicher, I. Polikarpov, F. C. L. Almeida, and D. Foguel, J. Biol. Chem. 285, 31731 (2010)   DOI
29 M. L. Muller, J. Butler, and B. Heidecker, Eur. J. Heart Fail. 22, 39 (2020)   DOI
30 X. Jiang, C. S. Smith, H. M. Petrassi, P. Hammarstrom, J. T. White, J. C. Sacchettini, and J. W. Kelly, Biochemistry 40, 11442 (2001)   DOI
31 J. Kim, J. Oroz, and M. Zweckstetter, Angew. Chemie - Int. Ed. 55, 16168 (2016)   DOI
32 K. H. Lim, A. K. R. Dasari, I. Hung, Z. Gan, J. W. Kelly, P. E. Wright, and D. E. Wemmer, Biochemistry 55, 5272 (2016)   DOI
33 X. Sun, H. J. Dyson, and P. E. Wright, Proc. Natl. Acad. Sci. U. S. A. 115, E6201 (2018)   DOI
34 J. Oroz, J. Kim, B. J. Chang, and M. Zweckstetter, Nat. Struct. Mol. Biol. 24, 407 (2017)   DOI