Browse > Article
http://dx.doi.org/10.6564/JKMRS.2020.24.3.086

Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein  

Kim, Bokyung (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.24, no.3, 2020 , pp. 86-90 More about this Journal
Abstract
Iron-sulfur (Fe-S) clusters are one of the most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S clusters are generated via several distinctive biogenesis mechanisms, among which the ISC (Iron-Sulfur Cluster) mechanism plays a house-keeping role to satisfy cellular needs for Fe-S clusters. The Escherichia coli ISC mechanism is maintained by several essential protein factors, whose structural characterization has been of great interest to reveal mechanistic details of the Fe-S cluster biogenesis mechanisms. In particular, nuclear magnetic resonance (NMR) spectroscopic approaches have contributed much to elucidate dynamic features not only in the structural states of the protein components but also in the interaction between them. The present minireview discusses recent advances in elucidating structural features of IscU, the key player in the E. coli ISC mechanism. IscU accommodates exceptional structural flexibility for its versatile activities, for which NMR spectroscopy was particularly successful. We expect that understanding to the structural diversity of IscU provides critical insight to appreciate functional versatility of the Fe-S cluster biogenesis mechanism.
Keywords
iron-sulfur cluster; iron-sulfur cluster biogenesis; protein structure; protein dynamics; NMR spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Beinert, R. H. Holm, and E. Munck, Science 277, 653 (1997)   DOI
2 D. C. Johnson, D. R. Dean, A. D. Smith, and M. K. Johnson, Annu. Rev. Biochem. 74, 247 (2005)   DOI
3 R. Lill, Nature 460, 831 (2009)   DOI
4 T. A. Rouault and W. H. Tong, Nat. Rev. Mol. Cell Biol. 6, 345 (2005)   DOI
5 D. R. Crooks, N. Maio, A. N. Lane, M. Jarnik, R. M. Higashi, R. G. Haller, Y. Yang, T. W. M. Fan, W. Marston Linehan, and T. A. Rouault, J. Biol. Chem. 293, 8297 (2018)   DOI
6 F. Prischi, C. Pastore, M. Carroni, C. Iannuzzi, S. Adinolfi, P. Temussi, and A. Pastore, Protein Expr. Purif. 73, 161 (2010)   DOI
7 J. Kim, M. Tonelli, and J. L. Markley, Proc. Natl. Acad. Sci. U. S. A. 109, 454 (2012)   DOI
8 J. Kim, R. O. Frederick, N. M. Reinen, A. T. Troupis, and J. L. Markley, J. Am. Chem. Soc. 135, 8117 (2013)   DOI
9 J. Kim, J. R. Bothe, R. O. Frederick, J. C. Holder, and J. L. Markley, J. Am. Chem. Soc. 136, 7933 (2014)   DOI
10 Z. Dai, M. Tonelli, and J. L. Markley, Biochemistry 51, 9595 (2012)   DOI
11 F. Bonomi, S. Iametti, D. Ta, and L. E. Vickery, J. Biol. Chem. 280, 29513 (2005)   DOI
12 F. Bonomi, S. Iametti, A. Morleo, D. Ta, and L. E. Vickery, Biochemistry 47, 12795 (2008)   DOI
13 J. Kim, A. K. Fuzery, M. Tonelli, D. Ta, W. M. Westler, L. E. Vickery, and J. L. Markley, Biochemistry 48, 6062 (2009)   DOI
14 T. A. Ramelot, J. R. Cort, S. Goldsmith-Fischman, G. J. Kornhaber, R. Xiao, R. Shastry, T. B. Acton, B. Honig, G. T. Montelione, and M. A. Kennedy, J. Mol. Biol. 344, 567 (2004)   DOI
15 J. Liu, N. Oganesyan, D. H. Shin, J. Jancarik, H. Yokota, R. Kim, and S. H. Kim, Proteins Struct. Funct. Genet. 59, 875 (2005)   DOI
16 J. Kim, M. Tonelli, T. Kim, and J. L. Markley, Biochemistry 51, 5557 (2012)   DOI
17 K. Cai, R. O. Frederick, J. Kim, N. M. Reinen, M. Tonelli, and J. L. Markley, J. Biol. Chem. 288, 28755 (2013)   DOI
18 R. Shi, A. Proteau, M. Villarroya, I. Moukadiri, L. Zhang, J. F. Trempe, A. Matte, E. Armengod, and M. Cygler, PLoS Biol. 8, e1000354 (2010)   DOI
19 Z. Dai, J. Kim, M. Tonelli, I. K. Ali, and J. L. Markley, Biochemistry 53, 5290 (2014)   DOI
20 J. Kim, J. R. Bothe, T. R. Alderson, and J. L. Markley, Biochim. Biophys. Acta 1853, 1416 (2015)   DOI
21 M. T. Boniecki, S. A. Freibert, U. Muhlenhoff, R. Lill, and M. Cygler, Nat. Commun. 8, 1287 (2017)   DOI
22 H. S. Alhajala, J. L. Markley, J. Kim, M. M. Al-Gizawiy, K. M. Schmainda, J. S. Kuo, and C. R. Chitambar, Oncotarget 11, 1531 (2020)   DOI
23 D. di Maio, B. Chandramouli, R. Yan, G. Brancato, and A. Pastore, A. Biochim. Biophys. Acta 1861, 3154 (2017)
24 Y. Shimomura, K. Wada, K. Fukuyama, and Y. Takahashi, J. Mol. Biol. 383, 133 (2008)   DOI
25 J. R. Cupp-Vickery, J. C. Peterson, D. T. Ta, and L. E. Vickery, J. Mol. Biol. 342, 1265 (2004)   DOI
26 J. Kim, M. Tonelli, R. O. Frederick, D. C. F. Chow, and J. L. Markley, J. Biol. Chem. 287, 31406 (2012)   DOI
27 R. Puglisi and A. Pastore, FEBS Lett. 592, 4011 (2018)   DOI
28 R. Lill and U. Muhlenhoff, Annu. Rev. Biochem. 77, 669 (2008)   DOI
29 M. Lella and R. Mahalakshmi Biochemistry 56, 2971 (2017)   DOI
30 T. A. Rouault, Biometals 32, 343 (2019)   DOI
31 N. Maio, A. Jain, and T. A. Rouault, Curr. Opin. Chem. Biol. 55, 34 (2020)   DOI
32 N. G. Fox, X. Yu, X. Feng, H. J. Bailey, A. Martelli, J. F. Nabhan, C. Strain-Damerell, C. Bulawa, W. W. Yue, and S. Han, Nat. Commun. 10, 2210 (2019)   DOI
33 S. A. Cory, J. G. Van Vranken, E. J. Brignole, S. Patra, D. R. Winge, C. L. Drennan, J. Rutter, and D. P. Barondeau, Proc. Natl. Acad. Sci. U. S. A. 114, E5325 (2017)   DOI