• Title/Summary/Keyword: Nuclear Fuel Cycles

Search Result 60, Processing Time 0.032 seconds

New Nuclear Fusion for Our Second Generations

  • Ho-Jin Choi;Koan-Sik Joo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.421-424
    • /
    • 1999
  • In this short report (before the authors would like to introduce an important application for one of the techniques of complex angular momentunm, say, Regge Pole approach, to nuclear fusion reaction for Light-ions: it will be reported in forthcoming papers), two kinds of thermalnuclear fusion reaction sources are introduced and discussed (A) the case of fusion: the production of neutron and target of Deuteron and (B) the case of fusion: the production of proton and target of Deuteron. Nuclear fusion reactions for Light-ions , such as the thermalnuclear energy sources and fuel cycles, are already well known. Fusion reactions are widely known as being extremly important and nationally vital (in point of view of nuclear weapons we must reconsider seriously development and building of such dangerous weapons) for our next generations in the future. This paper (a topics in review) is concerned with a simple introduction about a new nuclear fusion reaction of the above case of (B) for the second generation. Typical thermalnuclear fusion reactions which result in the release of huge amount of energy are nuclear stripping reactions:

  • PDF

Non-Destructive Examination of 3 Cycle Burned 14X14 PWR Fuel (3주기연소 14$\times$14 PWR 핵연료의 핫셀 비파괴시험)

  • 이기순;이영길;민덕기;박윤규;이은표;엄성호;노성기
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 1989
  • In order to investigate the in-reactor performance of the 14$\times$14 PWR fuel burner: for 3 cycles in power reactor, non-destructive examination was carried out in KAERI Hot Facility. The results obtained are as follows. 1) The surface of middle and bottom parts of the fuel rod was dark and the upper part was gray. 2) Severe defect such as through-hole was not found. 3) The diameter of rod was shrinked by about 0.65%, while the length was increased by about 0.55% Compared with the design values. 4) The burnup was decreased by about 2% at the inconel grid region compared to other parts.

  • PDF

Transmission Electron Microscopy Characterization of Early Pre-Transition Oxides Formed on ZIRLOTM

  • Bae, Hoyeon;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.301-312
    • /
    • 2015
  • Corrosion of zirconium fuel cladding is known to limit the lifetime and reloading cycles of fuel in nuclear reactors. Oxide layers formed on ZIRLO4^{TM}$ cladding samples, after immersion for 300-hour and 50-day in a simulated primary water chemistry condition ($360^{\circ}C$ and 20 MPa), were analyzed by using the scanning transmission electron microscopy (STEM), in-situ transmission electron microscopy (in-situ TEM) with the focused ion beam (FIB) technique, and X-ray diffraction (XRD). Both samples (immersion for 300 hours and 50 days) revealed the presence of the ZrO sub-oxide phase at the metal/oxide interface and columnar grains developed perpendicularly to the metal/oxide interface. Voids and micro-cracks were also detected near the water/oxide interface, while relatively large lateral cracks were found just above the less advanced metal/oxide interface. Equiaxed grains were mainly observed near the water/oxide interface.

An External Costs Assessment of the Impacts on Human Health from Nuclear Power Plants in Korea (국내원전운전(國內原電運轉)에 따른 보건영향(保健影響)의 외부비용평가(外部費用評價))

  • Kim, Kyoung-Pyo;Kang, Hee-Jung
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • As the first comprehensive attempt at a national implementation, this study aims at assessing the external costs of major electricity generation technologies in Korea, particularly an evaluation of the impacts on human health resulting from exposures to atmospheric radiological emissions from nuclear power plants, and a monetary quantification of their damages. The methodology used for the assessment of the externalities of the selected fuel cycles has been developed by the International Atomic Energy Agency (IAEA), namely the SimPacts Model Package. The model is internationally recognized as a tool which can be applied to a wide range of fuels, different technologies and locations, for an externalities study. In this study, the relevant emissions are quantified first and then their impacts on human health are evaluated and compared. The study focused on all the nuclear power plants for the last 6 years ($2001{\sim}2006$) in Korea. With respect to nuclear power, the impact analysis only focuses on a power generation, however the front- and back-end nuclear fuel cycles are not included, namely uranium mining, conversion, enrichment, reprocessing, conditioning, etc., because these facilities are not present in Korea. The analysis results show that nuclear power in general, generates low external costs. The highest damage costs from the nuclear power plants among the 4 sites in Korea were estimated to be 3.9 mills/MWh, which is about 1/20th of the result for a similar case study conducted in the U.K., implemented through the ExternE project. This difference is largely due to the number of radionuclides included in the study and the amount of released radioactive emissions based on up-to-date information in Korea. In this study, the sensitivities of the major factors for nuclear power plants were also calculated. The analysis indicates that there was around a ${\pm}3%$ damage costs variation to a ${\pm}15%$ change of the reference population density and a ${\pm}1%$ damage cost variation to a $1{\sim}30$ meters change of the effective release height, respectively. These sensitive calculations show that there is only a minor difference when the reference costs are compared.

Fretting Wear Mechanisms of Zircaloy-4 and Inconel 600 Contact in Air

  • Kim, Tae-Hyung;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1274-1280
    • /
    • 2001
  • The fretting wear behavior of the contact between Zircaloy-4 tube and Inconel 600, which are used as the fuel rod cladding and grid, respectively, in PWR nuclear power plants was investigated in air. In the study, number of cycles, slip amplitude and normal load were selected as the main factors of fretting wear. The results indicated that wear increased with load, slip amplitude and number of cycles but was affected mainly by the slip amplitude. SEM micrographs revealed the characteristics of fretting wear features on the surface of the specimens such as stick, partial slip and gross slip which depended on the slip amplitude. It was found that fretting wear was caused by the crack generation along the stick-slip boundaries due to the accumulation of plastic flow at small slip amplitudes and by abrasive wear in the entire contact area at high slip amplitudes.

  • PDF

Experimental Study of Freeze and Thaw Effect on Gas Diffusion Layer Using XRay Tomography (X-선 단층 촬영을 이용한 동결과 융해가 기체확산층에 미치는 영향에 대한 실험적 연구)

  • Je, Jun-Ho;Kim, Jong-Rok;Doh, Sung-Woo;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.487-490
    • /
    • 2011
  • We used X-ray tomography to carry out an experimental study to visualize the effect of freeze and thaw cycles on the gas diffusion layer (GDL) in a polymer electrolyte membrane fuel cell (PEMFC). A PEMFC has freeze and thaw cycles if the fuel cell is operating at a below-freezing ambient temperature. The cycle permanently deforms the fuel-cell capillary structures and reduces the ability of the cell to generate electric power and also reduces its service life. The GDL is the thickest capillary layer in the fuel cell, so it experiences the most deformation. The X-ray tomography facility at the Pohang Accelerator Laboratory was used to observe the structural changes in GDLs induced by a freeze and thaw cycle. We discuss the effects of these structural changes on the power production and service life of PEMFCs.

Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review

  • Slobodyan, Mikhail
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1049-1078
    • /
    • 2021
  • The review summarizes the published data on the widely applied electron-beam, laser-beam, as well as resistance upset, projection, and spot welding of zirconium alloys for nuclear applications. It provides the results of their analysis to identify common patterns in this area. Great attention has been paid to the quality requirements, the edge preparation, up-to-date equipment, process parameters, as well as post-weld treatment and processing. Also, quality control and weld repair methods have been mentioned. Finally, conclusions have been drawn about a significant gap between the capabilities of advanced welding equipment to control the microstructure and, accordingly, the properties of welded joints of the zirconium alloys and existing algorithms that enable to realize them in the nuclear industry. Considering the ever-increasing demands on the high-burnup accident tolerant nuclear fuel assemblies, great efforts should be focused on the improving the welding procedures by implementing predefined heat input cycles. However, a lot of research is required, since the number of possible combinations of the zirconium alloys, designs and dimensions of the joints dramatically exceeds the quantity of published results on the effect of the welding parameters on the properties of the welds.

Power Cost Analysis of Go-ri Nuclear Power Plant Units 1 and 2

  • Chung, Chang-Hyun;Kim, Chang-Hyo;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.101-116
    • /
    • 1976
  • An attempt is made to analyze the unit nuclear power cost of the Go-ri units 1 and 2 in terms of a set of model data. For the calculational purpose, the power cost is first decomposed into the cost components related to the plant capital, operation and maintenance, working capital requirements, and fuel cycle operation. Then, POWERCO-50 computer code is applied to enumerate the first three components and MITCOST-II is used to evaluate the fuel cycle cost component. The specific numerical results are the fuel cycle cost of Go-ri unit 2 for three alternative fuel cycles presumed, levelized unit power cost of units 1 and 2, and the sensitivity of the power cost to the fluctuation of the model data. Upon comparision of the results with the power cost of the fossil power plants in Korea, it is found that the nuclear power is economically preferred to the fossil power. Nevertheless, the turnkey contract value of Go-ri unit 2 appears to be rather expensive compared with the available data on the construction cost of the PWR plants. Therefore, it is suggested that, in order to make the nuclear power plants more attractive in Korea, the unfavorable contract of such kind must be avoided in the future introduction of the nuclear power plant. Capacity factor is of prime importance to achieving the economic generation of the nuclear electricity from the Go-ri plant. Therefore, it is concluded that more efforts should be directed to make the maximum use of the Go-ri plant.

  • PDF

Evaluation of spring shape effect on the nuclear fuel fretting using worn area (핵연료 프레팅 마멸에서 마멸면적을 이용한 스프링 형상 영향 평가)

  • Lee Young-Ho;Kim Hyung-Kyu;Jung Youn-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.313-323
    • /
    • 2003
  • The sliding wear behaviors of Zircaloy-4 nuclear fuel rod were investigated using two support springs with convex and concave shapes in room temperature air and water. The main focus is to compare the wear behavior of various test variables such as slip amplitude, environment, contact contours with different spring shape and a number of cycles. The results indicated that wear volume and maximum wear depth increased with slip amplitude in both air and water, but their trends tended to change according to the spring shapes and test environments. In air condition, the wear volume was controlled by wear debris behavior generated on worn surface. As a result, final wear volume and maximum wear depth decreased if a ratio of protruded wear volume to worn area $(D_p)$ would be saturated to specific value. This is because wear particle layer could accommodate large strain by accumulating and transforming wear particle layer. However, in water condition, metal-to metal contact was more dominant and wear volume was greatly affected by changed mechanical behavior between contact surfaces since wear debris should be generated after repeated plastic deformation and fracture. After wear test, worn surfaces were examined using optical microscope and SEM and details of wear mechanism were discussed using a ratio of wear volume to worn area $(D_e)$ at each test condition.

  • PDF

Determination of Hot Leg Recirculation Switchover Time to Prevent Boron Precipitation during Post-LOCA LTC for ULCHIN l&2

  • Park, Han-Rim;Ban, Chang-Hwan;Jeong, Jae-Hoon;Hwang, Sun-Tack;Chang, Byong-Hoon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.328-333
    • /
    • 1996
  • Boric acid concentrations of the refueling water storage tank (RWST) and the accumulators for Ulchin 1&2 (UCN 1&2) are increased to meet the post loss of coolant accident (post-LOCA) shutdown requirement for the extended fuel cycles from 12 months to 18 months. To maintain long term cooling (LTC) capability following a LOCA, the switchover tine is examined using BORON code to prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results show that, at 8 hours after the initiation of LOCA. the emergency core noting system (ECCS) should be manually realigned to the simultaneous recirculation mode from the cold leg recirculation mode.

  • PDF