DOI QR코드

DOI QR Code

Transmission Electron Microscopy Characterization of Early Pre-Transition Oxides Formed on ZIRLOTM

  • Bae, Hoyeon (School of Mechanical Engineering, Pusan National University (PNU)) ;
  • Kim, Taeho (School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Ji Hyun (School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Bahn, Chi Bum (School of Mechanical Engineering, Pusan National University (PNU))
  • Received : 2015.11.03
  • Accepted : 2015.12.10
  • Published : 2015.12.31

Abstract

Corrosion of zirconium fuel cladding is known to limit the lifetime and reloading cycles of fuel in nuclear reactors. Oxide layers formed on ZIRLO4^{TM}$ cladding samples, after immersion for 300-hour and 50-day in a simulated primary water chemistry condition ($360^{\circ}C$ and 20 MPa), were analyzed by using the scanning transmission electron microscopy (STEM), in-situ transmission electron microscopy (in-situ TEM) with the focused ion beam (FIB) technique, and X-ray diffraction (XRD). Both samples (immersion for 300 hours and 50 days) revealed the presence of the ZrO sub-oxide phase at the metal/oxide interface and columnar grains developed perpendicularly to the metal/oxide interface. Voids and micro-cracks were also detected near the water/oxide interface, while relatively large lateral cracks were found just above the less advanced metal/oxide interface. Equiaxed grains were mainly observed near the water/oxide interface.

Keywords

References

  1. N. Ni, D. Hudson, J. Wei, P. Wang, S. Lozano-Perez, G. D. W. Smith, J. M. Sykes, S. S. Yardley, K. L. Moore, S. Lyon, R. Cottis, M. Preuss, C. R. M. Grovenor, Acta Mater., 60, 7132 (2012). https://doi.org/10.1016/j.actamat.2012.09.021
  2. A. T. Motta, M. Gomes da Silva, A. Yilmazbayhan, R. J. Comstock, Z. Cai, B. Lai, J. ASTM Int., 5, 20 (2008).
  3. P. Bossis, G. Lelievre, P. Barberis, X. Iltis, F. Lefebvre, ASTM STP., 1354, 918 (2000).
  4. J. S. Bryner, J. Nucl. Mater., 82, 84 (1979). https://doi.org/10.1016/0022-3115(79)90042-4
  5. B. Griggs, H. P. Maffei, D. W. Shannon, J. Electrochem. Soc., 109, 665 (1962). https://doi.org/10.1149/1.2425526
  6. B. Lustman, F. Kerze, The Metallurgy of Zirconium, Vol.4, McGraw-Hill, New York (1955).
  7. M. Preuss, P. Frankel, E. Polatidis, J. Wei, J. Smith, C. English, F. Wang, R. Cottis, S. Lyon, S. Lozano-Perez, D. Hodson, N. Ni, C. Grovenor, G. Smith, J. Sykes, A. Cerezo, S. Storer, M. Fitzpatrick, proceedings of the 16th Int'l Symposium on Zirconium in the Nuclear Industry, J. ASTM Int., USA (2011).
  8. N. Ni, S. Lozano-Perez, J. M. Sykes, G. D. W. Smith, C. R. M. Grovenor, Corros. Sci., 53, 4073 (2011). https://doi.org/10.1016/j.corsci.2011.08.013
  9. P. Tejland, H. O. Andren, J. Nucl. Mater., 430, 64 (2012). https://doi.org/10.1016/j.jnucmat.2012.06.039
  10. B. Cox, J. Nucl. Mater., 336, 331 (2005). https://doi.org/10.1016/j.jnucmat.2004.09.029
  11. W. Gong, H. Zhang, C. Wu, H. Tian, X. Wang, Corros. Sci., 77, 391 (2013). https://doi.org/10.1016/j.corsci.2013.08.006
  12. H. J. Beie, F. Garzarolli, H. Ruhmann, H. J. Sell, A. Mitwalsky, 10th Int'l Symposium on Zirconium in the Nuclear Industry, p. 818, J. ASTM Int., USA (1994).
  13. Jeong-Yong Park, Seung-Jo Yoo, Byung-Kwon Choi, Yong Hwan Jeong, J. Alloy. Compd., 437, 274 (2007). https://doi.org/10.1016/j.jallcom.2006.07.101
  14. A. Yilmazbayhan, E. Breval, A. T. Motta, R. J. Comstock, J. Nucl. Mater., 349, 265 (2006). https://doi.org/10.1016/j.jnucmat.2005.10.012
  15. B. de Gabory, A. T. Motta, K. Wang, J. Nucl. Mater., 456, 272 (2015). https://doi.org/10.1016/j.jnucmat.2014.09.073
  16. P. Tejland, M. Thuvander, H. O. Andren, S. Ciurea, T. Andersson, M. Dahlback, L. Hallstadius, proceedings of the 16th Int'l Symposium on Zirconium in the Nuclear Industry, p. 595, J. ASTM Int., USA (2011).
  17. J. Wei, P. Frankel, E. Polatidis, M. Blat, A. Ambard, R. J. Comstock, L. Hallstadius, G. D. W. Smith, C. R. M. Grovenor, M. Klaus, R. A. Cottis, S. Lyon, M. Preuss, Acta Mater., 61, 4200 (2013). https://doi.org/10.1016/j.actamat.2013.03.046
  18. D. J. Spengler, A. T. Motta, R. Bajaj, J. R. Seidensticker, Z. Cai, J. Nucl. Mater., 464, 107 (2015). https://doi.org/10.1016/j.jnucmat.2015.04.006
  19. Seung-Jo Yoo, Jeong-Yong Park, Byung-Kwon Choi, Yong-Hwan Jeong, Korean J. Met. Mater., 45, 416 (2007).
  20. M. Parise, O. Sicardy, G. Cailletaud, J. Nucl. Mater., 256, 35 (1998). https://doi.org/10.1016/S0022-3115(98)00045-2
  21. Hyun-Gil Kim, Il-Hyun Kim, Jeong-Yong Park, Seung-Jo Yoo, Jin-Gyu Kim, J. Nucl. Mater., 451, 189 (2014). https://doi.org/10.1016/j.jnucmat.2014.03.050
  22. A. Ly, A. Ambard, M. Blat-Yrieix, L. Legras, P. Frankel, M. Preuss, C. Curfs, G. Parry, Y. Brechet, J. ASTM Int., 8, 1 (2011).

Cited by

  1. Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations vol.50, pp.3, 2015, https://doi.org/10.1016/j.net.2017.11.009