Browse > Article
http://dx.doi.org/10.1016/j.net.2020.10.005

Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review  

Slobodyan, Mikhail (Institute of Strength Physics and Materials Science SB RAS)
Publication Information
Nuclear Engineering and Technology / v.53, no.4, 2021 , pp. 1049-1078 More about this Journal
Abstract
The review summarizes the published data on the widely applied electron-beam, laser-beam, as well as resistance upset, projection, and spot welding of zirconium alloys for nuclear applications. It provides the results of their analysis to identify common patterns in this area. Great attention has been paid to the quality requirements, the edge preparation, up-to-date equipment, process parameters, as well as post-weld treatment and processing. Also, quality control and weld repair methods have been mentioned. Finally, conclusions have been drawn about a significant gap between the capabilities of advanced welding equipment to control the microstructure and, accordingly, the properties of welded joints of the zirconium alloys and existing algorithms that enable to realize them in the nuclear industry. Considering the ever-increasing demands on the high-burnup accident tolerant nuclear fuel assemblies, great efforts should be focused on the improving the welding procedures by implementing predefined heat input cycles. However, a lot of research is required, since the number of possible combinations of the zirconium alloys, designs and dimensions of the joints dramatically exceeds the quantity of published results on the effect of the welding parameters on the properties of the welds.
Keywords
Nuclear industry; Electron beam welding; Laser beam welding; Resistance welding; Zirconium alloys; Microstructure; Properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.-S. Kim, C.-Y. Lee, M.-S. Yang, Investigation on Nd:YAG laser weldability of Zircaloy-4 end cap closure for nuclear fuel elements, J. Kor. Nucl. Soc. 33:2 (2001) 175-183.
2 G. Satyanarayana, K.L. Narayana, B. Nageswara Rao, Numerical simulations on the laser spot welding of zirconium alloy endplate for nuclear fuel bundle assembly, Lasers Manuf. Mater. Process. 5:1 (2018) 53-70, https://doi.org/10.1007/s40516-018-0061-7.   DOI
3 Thermophysical Properties Database of Materials for Light Water Reactors and Heavy Water Reactors, International Atomic Energy Agency, Vienna, 2006.
4 S. Banerjee, P. Mukhopadhyay, Phase Transformations. Volume 12. Examples from Titanium and Zirconium Alloys, Elsevier Science, 2007.
5 K.F. Amouzouvi, L.J. Clegg, R.C. Styles, L. Mannik, T.-C. Ma, S.K. Brown, B.-W. Gu, Microstructural changes in laser hardened Zr-2.5Nb alloy, Scripta Metall. Mater. 32 (2) (1995) 289-294, https://doi.org/10.1016/S0956-716X(99)80052-1.   DOI
6 G. Satyanarayana, K.L. Narayana, B. Nageswara Rao, Identification of optimum laser beam welding process parameters for E110 zirconium alloy butt joint based on Taguchi-CFD simulations, Lasers Manuf. Mater. Process. 5:2 (2018) 182-199, https://doi.org/10.1007/s40516-018-0061-7.   DOI
7 M.A. Elkin, A.S. Kiselev, M.S. Slobodyan, Pulsed laser welding of Zre1%Nb alloy, Nucl. Eng. Technol. 51 (3) (2019) 776-783, https://doi.org/10.1016/j.net.2018.12.016.   DOI
8 M. Munidasa, M. Tian-Chi, A. Mandelis, S.K. Brown, L. Mannik, Nondestructive depth profiling of laser-processed Zr-2.5 Nb alloy by IR photothermal radiometry, Mater. Sci. Eng. 159:1 (1992) 111-118, https://doi.org/10.1016/0921-5093(92)90404-O.   DOI
9 L. Chai, B. Chen, S. Wang, N. Guo, C. Huang, Z. Zhou, W. Huang, Microstructural changes of Zr702 induced by pulsed laser surface treatment, Appl. Surf. Sci. 364 (2016) 61-68, https://doi.org/10.1016/j.apsusc.2015.12.105.   DOI
10 D.S. Setty, R.P. Ravinder, A.L.N. Murthy, Resistance butt welding of zirconium alloy material, Mater. Manuf. Process. 23:8 (2008) 844-851, https://doi.org/10.1080/10426910802384904.   DOI
11 S.-S. Kim, G.-I. Park, J.-W. Lee, J.-H. Koh, C.-H. Park, Effect of heat on the soundness of Zircaloy-4 end cap closure using a resistance upset welding, J. Nucl. Sci. Technol. 47 (3) (2010) 262-268, https://doi.org/10.1080/18811248.2010.9711953.   DOI
12 H. Suzuki, T. Hashimoto, H. Matsuda, Welding forces and bead formation mechanism in electron-beam welding, J. Jpn. Weld. Soc. 32 (1963) 996-1005, https://doi.org/10.2207/qjjws1943.32.996, 10, (in Japanese).   DOI
13 T.-H. Na, S.-J. Na, Y.-W. Park, A study on characteristics of end plug resistance welding process in nuclear fuel rods by experiment and numerical simulation, Int. J. Adv. Manuf. Technol. 98 (2018) 2241-2255, https://doi.org/10.1007/s00170-018-2365-3.   DOI
14 V.G. Kirichenko, A.I. Kirdin, T.A. Kovalenko, A.V. Ostapov, The influence of impulse laser irradiation on structure of surface lays zirconium alloys, Bulletin of Kharkov University. Series "Nuclei, parts, fields" 777 (2) (2007) 41-50, 34, (in Russian).
15 B. Chen, L. Chai, S. Wang, N. Guo, B. Song, Z. Zhou, C. Huang, Investigation of microstructures of laser surface-treated Zr702 sheet using electron channeling contrast imaging and electron backscatter diffraction techniques, Surf. Coating. Technol. 296 (2016) 13-19, https://doi.org/10.1016/j.surfcoat.2016.03.099.   DOI
16 L.J. Chai, S.Y. Wang, H. Wu, Z. Yang, H. Pan, B. Song, N. Guo, Bimodal plate structures induced by pulsed laser in duplex-phase Zr alloy, Sci. China Technol. Sci. 60 (2017) 587-592, https://doi.org/10.1007/s11431-016-0527-6.   DOI
17 L. Chai, B. Chen, S. Wang, Z. Zhou, W. Huang, Microstructural characteristics of a commercially pure Zr treated by pulsed laser at different powers, Mater. Char. 110 (2015) 25-32, https://doi.org/10.1016/j.matchar.2015.10.008.   DOI
18 S.F. Gnyusov, A.S. Kiselev, M.S. Slobodyan, B.F. Sovetchenko, M.M. Nekhoda, A.V. Strukov, P.M. Yurin, Formation of a joint in resistance spot microwelding, Weld. Int. 19 (2005) 737-741, https://doi.org/10.1533/wint.2005.3510, 9.   DOI
19 F. da Silva Junqueira, J.R. Silva, Development of a suitable weld geometry for pressure resistance welding of the leader test assembly (LTA'S) 16NGF fuel assembly fuel rod at ANGRA-1 nuclear power plant, in: International Nuclear Atlantic Conference, Recife, 2013.
20 T.-H. Na, S.-J. Na, M.-H. Ko, D.-S. Hwang, Algorithm development for quality monitoring on end plug resistance weldment of nuclear fuel rods, Int. J. Adv. Manuf. Technol. 85 (5-8) (2016) 991-1006, https://doi.org/10.1007/s00170-015-7997-y.   DOI
21 T.-H. Na, B.-H. Lee, M.-W. Kim, S.-J. Na, Quality monitoring of end plug resistance weldment for nuclear fuel rods by electrode displacement, Int. J. Adv. Manuf. Technol. 99 (2018) 2509-2522, https://doi.org/10.1007/s00170-018-2642-1.   DOI
22 S.-S. Kim, D.-S. Koo, G.-I. Park, J.-H. Koh, Remote resistance welding of Zr-4 endplate for DUPIC fuel fabrication, Mater. Sci. Forum 580-582 (2008) 397-400. https://doi.org/10.4028/www.scientific.net/MSF.580-582.397.   DOI
23 Z. Lin, F. Chen, G. Liang, Numerical simulation of residual stress and deformation of special resistance welding of nuclear power zirconium tube, Adv. Mater. Res. 154-155 (2011) 304-309. https://doi.org/10.4028/www.scientific.net/AMR.154-155.304.   DOI
24 ASTM G2/G2M-19 Standard Test Method for Corrosion Testing of Products of Zirconium, Hafnium, and Their Alloys in Water at 680°F (360℃) or in Steam at 750°F (400℃).
25 V.V. Melyukov, A.G. Korepanov, D.A. Repkin, M.I. Plyshevskii, Controlling the thermal regime of combined welding and local thermocyclic treatment of circumferential welded joints, Weld. Int. 22:8 (2008) 544-548, https://doi.org/10.1080/09507110802383303.   DOI
26 V.I. Vasilkov, A.A. Kislitsky, N.V. Onuchin, V.V. Rozhkov, A.V. Strukov, V.B. Chizhov, P.I. Lavrenyuk, On the causes of the formation of defects in E110 alloy welds made by electron beam welding and methods for dealing with them, Automat. Weld. 5 (2002) 41-43 (in Russian).
27 F.G. Reshetnikov, Design, production and operation of fuel rods of power reactors, in: Two Volumes, vol. 2, Energoatomizdat, Moscow, 1995 (in Russian).
28 S. Livingstone, L. Xiao, E.C. Corcoran, G.A. Ferrier, K.N. Potter, Development of laser welded appendages to Zircaloy-4 fuel tubing (sheath/cladding), Nucl. Eng. Des. 284 (2015) 97-105, https://doi.org/10.1016/j.nucengdes.2014.11.029.   DOI
29 Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, H. Abe, Current status of materials development of nuclear fuel cladding tubes for light water reactors, Nucl. Eng. Des. 316 (2017) 131-150, https://doi.org/10.1016/j.nucengdes.2017.02.031.   DOI
30 AWS G2.5, Guide for the Fusion Welding of Zirconium and Zirconium Alloys, 2012.
31 https://www.world-nuclear.org/.
32 H. Suzuki, T. Hashimoto, H. Matsuda, Some experiments on properties of electron-beam welds of reactive metals and other alloys, J. Jpn. Weld. Soc. 38 (7) (1963) 618-627, https://doi.org/10.2207/qjjws1943.32.618 (in Japanese).   DOI
33 T. Hashimoto, H. Matsuda, On the cooling process and prediction of welds in electron-beam welding, J. Jpn. Weld. Soc. 33 (1964) 918-927, https://doi.org/10.2207/qjjws1943.33.10_918, 10, (in Japanese).   DOI
34 E.Yu Rivkin, A.M. Vasnin, V.E. Mozharov, Resistance of zirconium alloys to fracture, Sov. Mater. Sci. 12:6 (1977) 589-593, https://doi.org/10.1007/BF00721752.   DOI
35 D.G. Hardy, J.C. Wood, V.F. Urbanic, Zirconium-niobium alloys as fuel cladding for water cooled reactors, in: I Nternational Symposium on Water Reactor Fuel Element Fabrication with Special Emphasis on the Effect of Fabrication Technology on Fuel Performance, 1978. Prague.
36 N.A.P. Kiran Kumar, J.A. Szpunar, Z. He, Microstructural studies and crystallographic orientation of different zones and d-hydrides in resistance welded Zircaloy-4 sheets, J. Nucl. Mater. 414 (2011) 341-351, https://doi.org/10.1016/j.jnucmat.2011.03.027.   DOI
37 S. Kim, K. Kim, J. Lee, J. Koh, Design and Fabrication of Remote Welding Equipment in a hot-cell, Science and Technology of Nuclear Installations, 2013, 970942, https://doi.org/10.1155/2013/970942.   DOI
38 T. Hashimoto, H. Matsuda, O. Ohashi, H. Irie, Experiments on soft-vacuum electron beam welding, J. Jpn. Weld. Soc. 38 (1969) 1090-1097, https://doi.org/10.2207/qjjws1943.38.10_1090, 10, (in Japanese).   DOI
39 A.V. Dobromyslov, N.I. Taluts, The Structure of Zirconium and its Alloys, Publishing House of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 1997 (in Russian).
40 S.A. Sirenko, Study of welded joining of the fuel rod end details with cladding of alloy Zr1Nb, produced different types of welding 182:13 (2003) 182-185. Questions of Atomic Science and Technology. Series: Vacuum, Pure Materials, Superconductors, (in Russian).
41 E.M. Oks, Plasma Cathode Electron Sources: Physics, Technology, Applications, NTL, Tomsk, 2005 (in Russian).
42 T.K. Saha, A.K. Ray, Vacuum e the ideal environment for welding of reactive materials, J. Phys. Conf. 114 (2008), 012047, https://doi.org/10.1088/1742-6596/114/1/012047.   DOI
43 U. Kamachi Mudali, A. Ravi Shankar, Electrochemical and surface studies on Zircaloy-4 exposed to concentrated nitric acid medium, Trans. Indian Inst. Met. 62 (6) (2009) 545-549.   DOI
44 A.N. Semenov, M.I. Plyshevskii, V.P. Gordo, N.S. Rassoshkina, Application of the method of design of an optimum experiment to determine the regimes of thermomechanical treatment of welded joints of zirconium alloys, Met. Sci. Heat Treat. 55:5-6 (2013) 265-269, https://doi.org/10.1007/s11041-013-9617-5.   DOI
45 H. Suzuki, T. Hashimoto, H. Matsuda, A study on electron-beam welding conditions of sheets of refractory metals, J. Jpn. Weld. Soc. 38 (1963) 378-383, https://doi.org/10.2207/qjjws1943.32.378, 4, (in Japanese).   DOI
46 J.-N. Yang, L.-J. Zhang, J. Ning, Q.-L. Bai, J.-Y. Pei, J.-Z. Liu, G.-F. Lu, J.-X. Zhang, Fiber laser welding characteristics of commercially pure zirconium (R60702) and structure-mechanics-corrosion performances of the joint, Int. J. Refract. Metals Hard Mater. 73 (2018) 58-73, https://doi.org/10.1016/j.ijrmhm.2018.01.023.   DOI
47 C. Cai, L. Li, W. Tao, G. Peng, X. Wang, Weld bead size, microstructure and corrosion behavior of zirconium alloys joints welded by pulsed laser spot welding, J. Mater. Eng. Perform. 25 (9) (2016) 3783-3792, https://doi.org/10.1007/s11665-016-2250-x.   DOI
48 L. Chai, S. Wang, H. Wu, N. Guo, H. Pan, L. Chen, K.L. Murty, B. Song, a/b Transformation characteristics revealed by pulsed laser-induced non-equilibrium microstructures in duplex-phase Zr alloy, Sci. China Technol. Sci. 60 (2017) 1255-1262, https://doi.org/10.1007/s11431-016-9038-y.   DOI
49 W.A. Aschoff, E.F. Baroch, Electron beam applications to refractory metals, J. Met. 3 (1962) 204-207.
50 H. Suzuki, T. Hashimoto, H. Matsuda, Electron-beam welding for pure zirconium and Zircaloy-2 alloy, J. Jpn. Weld. Soc. 31 (1962) 44-52, https://doi.org/10.2207/qjjws1943.31.44, 1, (in Japanese).   DOI
51 H. Suzuki, T. Hashimoto, H. Matsuda, Effect of electron-beam welding parameters on characteristics of bead section, J. Jpn. Weld. Soc. 32 (1963) 609-617, https://doi.org/10.2207/qjjws1943.32.609, 7, (in Japanese).   DOI
52 T. Hashimoto, H. Matsuda, Calculation by thermal conduction theory and its discussion for the penetration depth in electron-beam weld bead, J. Jpn. Weld. Soc. 33 (1964) 726-734, https://doi.org/10.2207/qjjws1943.33.9_726, 9, (in Japanese).   DOI
53 I.S. Lupakov, B.S. Rodchenkov, V.N. Vukolova, V.N. Tyurin, Structure and phase composition of weldments in the Zr-2.5Nb alloy, Met. Sci. Heat Treat. 15 (1973) 379-381, https://doi.org/10.1007/BF01166648, 5.   DOI
54 K.-N. Song, S.-S. Kim, S.-H. Lee, S.-B. Lee, Laser welding unit for intersection line welding of spacer grid inner straps and its application, J. Laser Micro/Nanoeng. 4 (2009) 11-17, https://doi.org/10.2961/jlmn.2009.01.0003, 1.   DOI
55 Y.S. Kim, S.J. Choi, Y.M. Cheong, Review of the initiation and arrest temperatures for delayed hydride cracking in zirconium alloys, Met. Mater. Int. 11:1 (2005) 39-47.   DOI
56 M.Y. Yao, B.X. Zhou, Q. Li, W.Q. Liu, Y.L. Chu, The effect of alloying modifications on hydrogen uptake of zirconium-alloy welding specimens during corrosion tests, J. Nucl. Mater. 350 (2006) 195-201, https://doi.org/10.1016/j.jnucmat.2005.12.005.   DOI
57 S. Tonpe, N. Saibaba, R.N. Jayaraj, A. Ravi Shankar, U. Kamachi Mudali, B. Raj, Process development for fabrication of Zircaloy-4 dissolver assembly for reprocessing of spent nuclear fuel, Energy Procedia 7 (2011) 459-467, https://doi.org/10.1016/j.egypro.2011.06.063.   DOI
58 Quality and Reliability Aspects in Nuclear Power Reactor Fuel Engineering, International Atomic Energy Agency, Vienna, 2015.
59 A.N. Semenov, M.I. Plyshevskii, V.P. Gordo, N.S. Rassoshkina, V.V. Melyukov, A.G. Korepanov, Optimization of the heating source in electron beam welding of zirconium pipes, Weld. Int. 27:4 (2013) 300-303, https://doi.org/10.1080/09507116.2012.715909.   DOI
60 P. Bendeich, V. Luzin, M. Law, Residual stresses in a welded Zircaloy cold neutron source containment vessel, Mater. Sci. Forum 777 (2014) 194-198. https://doi.org/10.4028/www.scientific.net/MSF.777.194.   DOI
61 S.A. Nikulin, Zirconium Alloys for Nuclear Power Reactors, MISiS, Moscow, 2007 (in Russian).
62 AWS A5.24, Specification for zirconium and zirconium-alloy welding electrodes and rods, 2014.
63 Russian Technical Specification OST 95 503-2006 Welded and brazed joints of parts of nuclear reactor cores. General technical requirements. Acceptance rules and quality control methods (in Russian).
64 ASTM B 614-05 Standard Practice for Descaling and Cleaning Zirconium and Zirconium Alloy Surfaces.
65 ISO 10270:1995 Corrosion of Metals and Alloys e Aqueous Corrosion Testing of Zirconium Alloys for Use in Nuclear Power Reactors.
66 Review of Fuel Failures in Water Cooled Reactors, International Atomic Energy Agency, Vienna, 2010.
67 K. Komuro, Welding of zirconium alloys, Weld. Int. 8 (1994) 141-148, https://doi.org/10.1080/09507119409548564, 2.   DOI
68 V.E. Blashchuk, Zirconium: alloys, welding, application (review), Automat. Weld. 7 (2005) 36-43 (in Russian).
69 P. Rudling, A. Strasser, F. Garzarolli, Welding of zirconium alloys: zirats special topic report, A.N.T. Int., Skultuna, 2007.
70 M.S. Slobodyan, Methods of creation of permanent zirconium alloy joints in reactor art: a review, Tsvetnye Met. 10 (2016) 91-98, https://doi.org/10.17580/tsm.2016.10.13.   DOI
71 YuA. Grigorovich, Mechanical properties of welded joints in zirconium alloys, Weld. Int. 3:12 (1989) 1063-1066, https://doi.org/10.1080/09507118909449082.   DOI
72 V.V. Ivanov, Fatigue crack propagation resistance of welded joints in a zirconium alloy with 2.5%Nb, Weld. Int. 1:9 (1987) 848-849, https://doi.org/10.1080/09507118709451107.   DOI
73 V.A. Vinogradov, L.N. Shchavelev, V.S. Popenko, V.A. Sereznov, Welding components of the active zone of nuclear reactors, Weld. Int. 8:7 (1994) 546-549, https://doi.org/10.1080/09507119409548646.   DOI
74 A.G. Poptsov, V.V. Melyukov, A system for contactless control of the temperature field in welding and local heat treatment of pipes made of zirconium alloys, Weld. Int. 15:3 (2001) 235-237, https://doi.org/10.1080/09507110109549349.   DOI
75 V.N. Tyurin, Effect of rolling parameters on the structure and properties of welded joints in a zirconium alloy with 2.5%Nb, Weld. Int. 2:5 (1988) 449-451, https://doi.org/10.1080/09507118809447496.   DOI
76 U. Kamachi Mudali, A. Ravi Shankar, R. Natarajan, N. Saibaba, B. Raj, Application of zirconium alloys for reprocessing plant components, Nucl. Technol. 182:3 (2013) 349-357, https://doi.org/10.13182/NT12-73.   DOI
77 M.N. Jha, D.K. Pratihar, A.V. Bapat, V. Dey, M. Ali, A.C. Bagchi, Knowledgebased systems using neural networks for electron beam welding process of reactive material (Zircaloy-4), J. Intell. Manuf. 25 (2014) 1315-1333, https://doi.org/10.1007/s10845-013-0732-3.   DOI
78 B. Zhang, X. Li, T. Wang, X. Wang, Microstructure and corrosion behavior of Zr-702 joined by electron beam welding, Vacuum 121 (2015) 159-165, https://doi.org/10.1016/j.vacuum.2015.08.005.   DOI
79 C.J. Pargaa, I.J. van Rooyen, B.D. Coryell, W.R. Lloyd, L.N. Valenti, H. Usman, Room temperature mechanical properties of electron beam welded Zircaloy4 sheet, J. Mater. Process. Technol. 241 (2017) 73-85, https://doi.org/10.1016/j.jmatprotec.2016.11.001.   DOI
80 V.N. Tyurin, B.G. Parfenov, A.I. Evstyukhin, YuF. Bychkov, M.I. Plyshevsky, N.A. Cherkasov, L.T. Rudenekaya, V.V. Osipov, N.S. Rassoshkina, Study of structural transformations in welded joints of zirconium alloys with niobium during heat treatment, in: V.S. Emelyanova, A.I. Evstyukhina (Eds.), Zirconium and its Alloys, Energy Publishing, Moscow, 1982, pp. 55-70 (in Russian).
81 A.N. Semenov, M.I. Plyshevskii, V.V. Melyukov, A.G. Korepanov, N.S. Rassoshkina, A.A. Uvarov, Properties of welded joints from alloy Zr-2.5% Nb after electron-beam local thermocycling, Met. Sci. Heat Treat. 55 (2014) 670-674, https://doi.org/10.1007/s11041-014-9688-y, 11e12.   DOI
82 B. Bandi, S.K. Dinda, J. Kar, G.G. Roy, P. Srirangam, Effect of weld parameters on porosity formation in electron beam welded Zircaloy-4 joints: X-ray tomography study, Vacuum 158 (2018) 172-179, https://doi.org/10.1016/j.vacuum.2018.09.060.   DOI
83 J. Vandegrift, C.J. Parga, B. Coryell, D.P. Butt, B.J. Jaques, Oxidation behavior of welded Zry-3, Zry-4, and Zr-1Nb tubes, Nucl. Mater. Energy 21 (2019), 100714, https://doi.org/10.1016/j.nme.2019.100714.   DOI
84 J.W. Bennett, Commissioning of NAA at the new OPAL reactor in Australia, J. Radioanal. Nucl. Chem. 278 (2008) 671-673, https://doi.org/10.1007/s10967-008-1502-0.   DOI
85 A.G. Samoilov, V.S. Volkov, Fuel elements of nuclear reactors, Soviet J. Atom. Energy 6 (1960) 150-164, https://doi.org/10.1007/BF01481447, 3.   DOI
86 O. Muranskya, T.M. Holden, O. Kirstein, J.A. James, A.M. Paradowska, L. Edwards, Evaluation of residual stresses in electron-beam welded Zr2.5Nb0.9Hf Zircadyne flange mock-up of a reflector vessel beam tube flange, J. Nucl. Mater. 438 (2013) 154-162, https://doi.org/10.1016/j.jnucmat.2013.02.045.   DOI
87 V.V. Melyukov, Effect of the optimum thermal welding conditions on residual strains and stresses in welded joints in Zr-2.5%Nb alloy, Weld. Int. 11: 8 (1997) 639-641, https://doi.org/10.1080/09507119709448447.   DOI
88 S.V. Rybakov, A.B. Levitskaya, Mechanical and corrosion properties of welded joints in a zirconium alloy when interacting with liquid cadmium and cesium, Weld. Int. 2 (1988) 20-22, https://doi.org/10.1080/09507118809451123, 1.   DOI
89 M. Miura, K. Ogawa, Welding and bonding of zirconium and its alloys, Weld. Int. 3:7 (1989) 591-596, https://doi.org/10.1080/09507118909446619.   DOI
90 T. Michio, A. Nobuyuki, H. Motomu, S. Tetsumi, Electron beam welding of zirconium plate, Trans. JWRI 19:1 (1990) 149-150. http://hdl.handle.net/11094/9918.
91 M.I. Plyshevskii, N.S. Rassoshkina, A.N. Semenov, V.N. Tyurin, Effect of shielding conditions in welding and of surface preparation quality on corrosion resistance of welded joints in zirconium, Weld. Int. 15:6 (2001) 494-496, https://doi.org/10.1080/09507110109549394.   DOI
92 H.G. Weidinger, H. Lettau, Advanced material and fabrication technology for LWR fuel, in: International Symposium on Improvements in Water Reactor Fuel Technology and Utilization, 1986. Stockholm.
93 H. Schultz, Electron Beam Welding, Abington Publishing, Cambridge, 1994.
94 R.O. Cirimello, E.E. Perez, O. Saracco, S. Harriague, Recent developments in power reactor fuel in Argentina, in: International Symposium on Improvements in Water Reactor Fuel Technology and Utilization, 1986. Stockholm.
95 F.L. Zhang, S.C. Zhang, W.D. He, Fuel design for extended burnup in a demonstration assembly, in: International Symposium on Improvements in Water Reactor Fuel Technology and Utilization, 1986. Stockholm.
96 S.-S. Kim, J.-W. Lee, J.-H. Koh, Y.-H. Lee, Technology of the end cap laser welding for irradiation fuel rods, J. KWS 21:6 (2003) 626-631.
97 Q. Wan, X. Bai, X. Liu, Impact of yttrium ion implantation on corrosion behavior of laser beam welded Zircaloy-4 in sulfuric acid solution, Appl. Surf. Sci. 252 (2005) 1974-1980, https://doi.org/10.1016/j.apsusc.2005.03.154.   DOI
98 L.-F. Wei, C. Bao, S.-Z. Wang, Y. Zheng, M.-B. Zhou, Low cycle fatigue properties of hydrogenated welding sheets of Zr-Sn-Nb alloy using funnel-shaped flat specimens, Nucl. Eng. Technol. 52 (8) (2020) 1724-1731, https://doi.org/10.1016/j.net.2020.01.011.   DOI
99 K. Une, S. Ishimoto, Crystallographic measurement of the b to a phase transformation and d-hydride precipitation in a laser-welded Zircaloy-2 tube by electron backscattering diffraction, J. Nucl. Mater. 389 (2009) 436-442, https://doi.org/10.1016/j.jnucmat.2009.02.033.   DOI
100 G.R. Vadolia, K.P. Singh, Electron beam welding: study of process capability and limitations towards development of nuclear components, IOP Conf. Ser.: J. Phys. 823 (2017), 012040, https://doi.org/10.1088/1742-6596/823/1/012040.   DOI
101 N. Boutarek, B. Azzougui, D. Saidi, M. Neggache, Microstructure change in the interface of CO2 laser welded zirconium alloys, Phys. Procedia 2 (2009) 1159-1165, https://doi.org/10.1016/j.phpro.2009.11.078.   DOI
102 W. Tao, C. Cai, L. Li, Y. Chen, Y.L. Wang, Pulsed laser spot welding of intersection points for Zircaloy-4 spacer grid assembly, Mater. Des. 52 (2013) 487-494, https://doi.org/10.1016/j.matdes.2013.05.037.   DOI
103 S. Kim, W. Lee, D. Kim, One-step distortion simulation of pulsed laser welding with multi-physics information, Int. J. Simulat. Model. 14:1 (2015) 85-97, https://doi.org/10.2507/IJSIMM14(1)8.291.   DOI
104 K.-N. Song, S.-H. Lee, Effect of weld properties on the crush strength of the PWR spacer grid, Sci. Technol. Nucl. Install. (2012), 540285, https://doi.org/10.1155/2012/540285.   DOI
105 J.-H. Koh, J.-W. Lee, S.-H. Jung, The effect of weld line on the mechanical strengths and its elimination process in the Zr-4 resistance upset welds, J. Kor. Nucl. Soc. 23:1 (1991) 1-11.
106 G. Satyanarayana, K.L. Narayana, B. Nageswara Rao, M.S. Slobodyan, M.A. Elkin, A.S. Kiselev, Numerical simulation of the processes of formation of a welded joint with a pulsed ND:YAG laser welding of Zr-1%Nb alloy, Therm. Eng. 66:3 (2019) 210-218, https://doi.org/10.1134/S0040601519030066.   DOI
107 A.S. Bain, W.R. Tarasuk, K.T. Bates, D.G. Hardy, CANDU fuel e the influence of design on fuel performance, in: International Symposium on Water Reactor Fuel Element Fabrication with Special Emphasis on the Effect of Fabrication Technology on Fuel Performance, 1978. Prague.
108 R.A. Bordoni, A.M. Olmedo, Microstructure in the weld region in seam welded and resistance welded Zircaloy-4 tubing, J. Mater. Sci. 16 (1981) 1527-1532.   DOI
109 C. Cai, L. Li, G. Peng, Comparative study of oxides formed on fusion zone and base metal of laser welded Zr-1.0Sn-1.0Nb-0.1Fe alloy, J. Mater. Eng. Perform. 28:2 (2019) 1161-1172, https://doi.org/10.1007/s11665-018-3836-2.   DOI
110 M.S. Slobodyan, S.K. Pavlov, G.E. Remnev, Corrosion and high-temperature steam oxidation of E110 alloy and its laser welds after ion irradiation, Corrosion Sci. 152 (2019) 60-74, https://doi.org/10.1016/j.corsci.2019.02.031.   DOI
111 L.T. Babkin, K.K. Sukhov, D.V. Sannikov, A.Ya Yashunskii, O.K. Peslyak, Sealing of fuel elements for nuclear reactors by resistance butt welding, Weld. Int. 14:2 (2000) 162-164, https://doi.org/10.1080/09507110009549158.   DOI
112 I.N. Sidorov, A.A. Gradovich, A.A. Kislitsky, V.V. Rozhkov, A.V. Strukov, I.G. Chapaev, P.I. Lavrenyuk Equipment for resistance upset welding of fuel elements of nuclear reactors, Automat. Weld. 3 (2002) 50-52 (in Russian).
113 A.M. Olmedo, Microstructure of the weld region in resistance-welded Zircaloy-4, J. Mater. Sci. 15 (1980) 1050-1051.   DOI
114 V. Gheata, A.C. Galeriu, I. Dobos, F. Glodeanu, Experience gained in the fabrication of experimental fuel rods with natural uranium and Zircaloy-4 cladding for irradiation experiments, in: International Symposium on Water Reactor Fuel Element Fabrication with Special Emphasis on the Effect of Fabrication Technology on Fuel Performance, 1978. Prague.
115 A. Harooni, A.M. Nasiri, A.P. Gerlich, A. Khajepour, A. Khalifa, J.M. King, Processing window development for laser cladding of zirconium on zirconium alloy, J. Mater. Process. Technol. 230 (2016) 263-271, https://doi.org/10.1016/j.jmatprotec.2015.11.028.   DOI
116 Q. Wan, X. Bai, X. Zhang, Impact of high dose krypton ion irradiation on corrosion behavior of laser beam welded Zircaloy-4, Mater. Res. Bull. 41 (2006) 387-395, https://doi.org/10.1016/j.materresbull.2005.08.007.   DOI
117 E.V. Yudina, T.M. Poletika, S.F. Gnyusov, L.B. Zuev, Examination of the structural condition of welded joints in zirconium elements of nuclear reactors, Weld. Int. 20:12 (2006) 965-969, https://doi.org/10.1533/wint.2006.3708.   DOI
118 M.S. Slobodyan, A.S. Kiselev, Optimization of welding parameters for smallscale resistance spot welding of zirconium alloys, Mater. Sci. Forum 970 (2019) 145-152. https://doi.org/10.4028/www.scientific.net/MSF.970.145.   DOI
119 A.S. Kiselev, M.S. Slobodyan, Effects of electrode degradation on properties of small-scale resistance spot welded joints of E110 alloy, Mater. Sci. Forum 970 (2019) 227-235. https://doi.org/10.4028/www.scientific.net/MSF.970.227.   DOI
120 H. Suzuki, T. Hashimoto, F. Matsuda, K. Tanuma, Spot welding of zirconium and Zircaloy-2 alloy sheets, J. Jpn. Weld. Soc. 30:6 (1961) 418-428, https://doi.org/10.2207/qjjws1943.30.418 (in Japanese).   DOI
121 S. Mishra, R.T. Savalia, K. Bhanumurthy, G.K. Dey, S. Banerjee, Characterisation of metallic glass incorporated Zircaloy-2 weldments, J. Nucl. Mater. 227 (1995) 122-129.   DOI
122 J.B. Meireles, G.P. Sakamiti, J.A. de Castro, Evaluation of electrodes of the resistance spot welding with a chromium coating on the welding of Zircalloy, Soldagem Inspegao 23:3 (2018) 350-363, https://doi.org/10.1590/0104-9224/SI2303.05 (in Portuguese).   DOI
123 J. Hong, C.-Y. Joung, K.-H. Kim, S.-H. Heo, H.-G. Kim, Study on fiber laser welding conditions for the fabrication of a nuclear fuel rod, Int. J. Precis. Eng. Manuf. 15:4 (2014) 777-781, https://doi.org/10.1007/s12541-014-0399-5.   DOI
124 M.N.V. Viswanath, K.R. Subramanyam, K.S. Subramanian, B. Prahlad, R.N. Jayaraj, Evolution of ultrasonic testing for end closure welds for PHWR fuel elements at NFC, in: 18th World Conference on NDT, 2012. Durban, South Africa.
125 J.-Y. Park, T.-H. Na, T.-H. Lee, J.-H. Lee, B.-Y. Lee, J.-S. Kim, Effect of applied current on the formation of defect in PWR nuclear fuel rods in resistance pressure welding process, J. Nucl. Sci. Technol. 52 (5) (2015) 748-757, https://doi.org/10.1080/00223131.2014.971900.   DOI
126 K.-N. Song, S.-D. Hong, S.-H. Lee, H.-Y. Park, Effect of mechanical properties in the weld zone on the structural analysis results of a plate-type heat exchanger prototype and pressurized water reactor spacer grid, J. Nucl. Sci. Technol. 49 (9) (2012) 947-960, https://doi.org/10.1080/00223131.2012.713571.   DOI
127 D.H. Jeong, J.H. Kim, J.K. Park, K.L. Jeon, S.K. Lee, J.M. Suh, Fatigue characteristics of laser welded Zircaloy thin sheet, Int. J. Mod. Phys. 6 (2012) 367-372, https://doi.org/10.1142/S2010194512003455.   DOI
128 Q. Han, D. Kim, D. Kim, H. Lee, N. Kim, Laser pulsed welding in thin sheets of Zircaloy-4, J. Mater. Process. Technol. 212 (2012) 1116-1122, https://doi.org/10.1016/j.jmatprotec.2011.12.022.   DOI
129 S. Kim, W.-J. Lee, Q. Han, D. Kim, Pulsed laser induced mechanical behavior of Zircaloy-4, J. Mater. Res. 30:4 (2015) 556-565, https://doi.org/10.1557/jmr.2014.390.   DOI
130 C. Cai, W. Tao, L. Li, Y. Chen, Weld bead formation and corrosion behavior of pulsed laser welded zirconium alloy, Int. J. Adv. Manuf. Technol. 77 (2015) 621-628, https://doi.org/10.1007/s00170-014-6474-3.   DOI
131 L. Chai, H. Wu, S. Wang, K. Chen, T. Wang, J. Xia, Characterization of microstructure and hardness of a Zr-2.5Nb alloy surface-treated by pulsed laser, Mater. Chem. Phys. 198 (2017) 303-309, https://doi.org/10.1016/j.matchemphys.2017.06.032.   DOI
132 A.B. Aleksandrov, YuA. Zhukov, V.N. Vasyukov, I.S. Gruzman, YuK. Karlov, V.G. Marchenko, A.A. Spektor, Automatic detection of spills and gas pockets upon ultrasonic checking of welds in zirconium fuel claddings, Russ. J. Nondestr. Test. 40:4 (2004) 233-238, https://doi.org/10.1023/B:RUNT.0000043671.04266.cb.   DOI
133 J. Fu, R. Tan, Q. Wang, J. Deng, M. Liu, A cone beam computed tomography inspection method for fuel rod cladding tubes, Nucl. Instrum. Methods Phys. Res. 688 (2012) 1-6, https://doi.org/10.1016/j.nima.2012.05.093.   DOI
134 E.Z. Akbolatov, A.S. Kiselev, M.S. Slobodyan, Prediction and stabilization of initial resistance between electrodes for small-scale resistance spot welding, Weld. World 63:2 (2019) 443-457, https://doi.org/10.1007/s40194-018-0671-x.   DOI
135 L. Chai, K. Chen, Y. Zhi, K.L. Murty, L.-Y. Chen, Z. Yang, Nanotwins induced by pulsed laser and their hardening effect in a Zr alloy, J. Alloys Compd. 748 (2018) 163-170, https://doi.org/10.1016/j.jallcom.2018.03.126.   DOI
136 J. Dai, K. Chen, L. Chai, Y. Zhu, H. Guan, N. Guo, Surface microstructural characteristics and hardness of Cr-coated Zr702 sheet processed by pulsed laser, Intermetallics 119 (2020) 106710, https://doi.org/10.1016/j.intermet.2020.106710.   DOI
137 B. Lustman, F. Kerze (Eds.), The Metallurgy of Zirconium, McGraw-Hill Book Company, New York, 1955.
138 L. Hu, D. Zhou, X. Jia, Y. Lu, Z. Tan, D. Jiang, Numerical simulation and laser butt welding of Zr-Sn-Nb-Fe zirconium alloy sheets, Zhongguo Jiguang Chin. J. Lasers 43:7 (2016), 0702002, https://doi.org/10.3788/CJL201643.0702002.   DOI
139 YuK. Karlov, Development and Implementation of Automated Complexes of Non-destructive Testing of Nuclear Fuel, TPU, Tomsk, 2016 (in Russian).
140 J. Rawers, W. Reitz, S. Bullard, E.K. Roub, Surface and corrosion study of laserprocessed zirconium alloys, Corrosion 47:10 (1991) 769-777, https://doi.org/10.5006/1.3585187.   DOI
141 V. Proskuryakov, S. Mezentzov, I. Rodionov, Structure and hardness of the zirconium surface after laser modification, IOP Conf. Ser.: J. Phys. 1124 (2018), 081042, https://doi.org/10.1088/1742-6596/1124/8/081042.   DOI
142 R.K. Jain, D.K. Agrawal, S.C. Vishwakarma, A.K. Choubey, B.N. Upadhyaya, S.M. Oak, Development of underwater laser cutting technique for steel and zircaloy for nuclear applications, Pramana - J. Phys. 75:6 (2010) 1253-1258, https://doi.org/10.1007/s12043-010-0214-5.   DOI
143 M.S. Slobodyan, V.N. Kudiiarov, A.M. Lider, Effect of energy parameters of pulsed laser welding of Zr-1%Nb alloy on metal contamination with gases and properties of welds, J. Manuf. Process. 45 (2019) 472-490, https://doi.org/10.1016/j.jmapro.2019.06.025.   DOI
144 S.-S. Kim, J.-W. Lee, G.-I. Park, J.-H. Koh, Development of Zircaloy-4 endplate welding technology for a DUPIC fuel bundle assembly, J. Nucl. Sci. Technol. 46:2 (2009) 103-108, https://doi.org/10.1080/18811248.2007.9711512.   DOI
145 J.F. Lancaster, The Physics of Welding, Pergamon Press, Oxford, 1986.
146 P.A. Leontiev, N.T. Chekanova, M.G. Khan, Laser Surface Treatment of Metals and Alloys, Metallurgy, Moscow, 1986.
147 W. Reitz, J. Rawers, Immersion corrosion studies of laser processed zirconium, J. Mater. Sci. Lett. 9:3 (1990) 355-357, https://doi.org/10.1007/BF00725849.   DOI
148 K.F. Amouzouvi, L.J. Clegg, R.C. Styles, Surface modifications of zirconium alloys by laser glazing, in: S.A. Meguid (Ed.), Surface Engineering, Springer, Dordrecht, 1990, pp. 270-279, https://doi.org/10.1007/978-94-009-0773-7_28.
149 W. Reitz, J. Rawers, Effect of laser surface melted zirconium alloys on microstructure and corrosion, resistance, J. Mater. Sci. 27 (9) (1992) 2437-2443, https://doi.org/10.1007/BF01105055.   DOI
150 J. Xu, X. Bai, F. He, S. Wang, X. He, Y. Fan, Influence of Ar ion bombardment on the uniform corrosion resistance of laser-surface-melted Zircaloy-4, J. Nucl. Mater. 265 (3) (1999) 240-244, https://doi.org/10.1016/S0022-3115(98)00732-6.   DOI
151 H. Suzuki, T. Hashimoto, H. Matsuda, Mechanism of penetration and bead shape in electron-beam welding, J. Jpn. Weld. Soc. 32 (1963) 503-513, https://doi.org/10.2207/qjjws1943.32.503, 6, (in Japanese).   DOI
152 G.B. Goncharov, V.F. Grabin, A.M. Korol, L.I. Adeeva, Structure and properties of welded joints in laser and arc welding Zr-2.5%Nb alloy, Weld. Int. 7:10 (1993) 798-801, https://doi.org/10.1080/09507119309548494.   DOI
153 K. Chen, L. Zeng, Z. Li, L. Chai, Y. Wang, L.-Y. Chen, H. Yu, Effects of laser surface alloying with Cr on microstructure and hardness of commercial purity Zr, J. Alloys Compd. 784 (2019) 1106-1112, https://doi.org/10.1016/jjallcom.2019.01.097.   DOI
154 A.V. Nikulina, A.G. Malgin, Impurities and their effect on the structure and properties of zirconium parts in nuclear reactors, Atom. Energy 105 (2008) 328-339, https://doi.org/10.1007/s10512-009-9104-7, 5.   DOI
155 G.P. Sakamiti, R.H.M.D. Siqueira, S.M.D. Carvalho, J.B. Meireles, M.S.F.D. Lima, Weldability of a zirconium alloy comparing resistance and pulsed laser methods, Nucl. Mater. Energy 20 (2019), 100693, https://doi.org/10.1016/j.nme.2019.100693.   DOI