DOI QR코드

DOI QR Code

Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review

  • Received : 2020.04.30
  • Accepted : 2020.10.03
  • Published : 2021.04.25

Abstract

The review summarizes the published data on the widely applied electron-beam, laser-beam, as well as resistance upset, projection, and spot welding of zirconium alloys for nuclear applications. It provides the results of their analysis to identify common patterns in this area. Great attention has been paid to the quality requirements, the edge preparation, up-to-date equipment, process parameters, as well as post-weld treatment and processing. Also, quality control and weld repair methods have been mentioned. Finally, conclusions have been drawn about a significant gap between the capabilities of advanced welding equipment to control the microstructure and, accordingly, the properties of welded joints of the zirconium alloys and existing algorithms that enable to realize them in the nuclear industry. Considering the ever-increasing demands on the high-burnup accident tolerant nuclear fuel assemblies, great efforts should be focused on the improving the welding procedures by implementing predefined heat input cycles. However, a lot of research is required, since the number of possible combinations of the zirconium alloys, designs and dimensions of the joints dramatically exceeds the quantity of published results on the effect of the welding parameters on the properties of the welds.

Keywords

Acknowledgement

This work was supported by the Program for Basic Scientific Research at the State Academies of Sciences for 2013-2020 (Project No. 23.2.1).

References

  1. Quality and Reliability Aspects in Nuclear Power Reactor Fuel Engineering, International Atomic Energy Agency, Vienna, 2015.
  2. F.G. Reshetnikov, Design, production and operation of fuel rods of power reactors, in: Two Volumes, vol. 2, Energoatomizdat, Moscow, 1995 (in Russian).
  3. A.V. Dobromyslov, N.I. Taluts, The Structure of Zirconium and its Alloys, Publishing House of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 1997 (in Russian).
  4. Thermophysical Properties Database of Materials for Light Water Reactors and Heavy Water Reactors, International Atomic Energy Agency, Vienna, 2006.
  5. S. Banerjee, P. Mukhopadhyay, Phase Transformations. Volume 12. Examples from Titanium and Zirconium Alloys, Elsevier Science, 2007.
  6. S.A. Nikulin, Zirconium Alloys for Nuclear Power Reactors, MISiS, Moscow, 2007 (in Russian).
  7. A.V. Nikulina, A.G. Malgin, Impurities and their effect on the structure and properties of zirconium parts in nuclear reactors, Atom. Energy 105 (2008) 328-339, https://doi.org/10.1007/s10512-009-9104-7, 5.
  8. Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, H. Abe, Current status of materials development of nuclear fuel cladding tubes for light water reactors, Nucl. Eng. Des. 316 (2017) 131-150, https://doi.org/10.1016/j.nucengdes.2017.02.031.
  9. AWS G2.5, Guide for the Fusion Welding of Zirconium and Zirconium Alloys, 2012.
  10. AWS A5.24, Specification for zirconium and zirconium-alloy welding electrodes and rods, 2014.
  11. Russian Technical Specification OST 95 503-2006 Welded and brazed joints of parts of nuclear reactor cores. General technical requirements. Acceptance rules and quality control methods (in Russian).
  12. ASTM B 614-05 Standard Practice for Descaling and Cleaning Zirconium and Zirconium Alloy Surfaces.
  13. ASTM G2/G2M-19 Standard Test Method for Corrosion Testing of Products of Zirconium, Hafnium, and Their Alloys in Water at 680°F (360℃) or in Steam at 750°F (400℃).
  14. ISO 10270:1995 Corrosion of Metals and Alloys e Aqueous Corrosion Testing of Zirconium Alloys for Use in Nuclear Power Reactors.
  15. Review of Fuel Failures in Water Cooled Reactors, International Atomic Energy Agency, Vienna, 2010.
  16. https://www.world-nuclear.org/.
  17. K. Komuro, Welding of zirconium alloys, Weld. Int. 8 (1994) 141-148, https://doi.org/10.1080/09507119409548564, 2.
  18. V.E. Blashchuk, Zirconium: alloys, welding, application (review), Automat. Weld. 7 (2005) 36-43 (in Russian).
  19. P. Rudling, A. Strasser, F. Garzarolli, Welding of zirconium alloys: zirats special topic report, A.N.T. Int., Skultuna, 2007.
  20. M.S. Slobodyan, Methods of creation of permanent zirconium alloy joints in reactor art: a review, Tsvetnye Met. 10 (2016) 91-98, https://doi.org/10.17580/tsm.2016.10.13.
  21. J.W. Bennett, Commissioning of NAA at the new OPAL reactor in Australia, J. Radioanal. Nucl. Chem. 278 (2008) 671-673, https://doi.org/10.1007/s10967-008-1502-0.
  22. A.G. Samoilov, V.S. Volkov, Fuel elements of nuclear reactors, Soviet J. Atom. Energy 6 (1960) 150-164, https://doi.org/10.1007/BF01481447, 3.
  23. W.A. Aschoff, E.F. Baroch, Electron beam applications to refractory metals, J. Met. 3 (1962) 204-207.
  24. H. Suzuki, T. Hashimoto, H. Matsuda, Electron-beam welding for pure zirconium and Zircaloy-2 alloy, J. Jpn. Weld. Soc. 31 (1962) 44-52, https://doi.org/10.2207/qjjws1943.31.44, 1, (in Japanese).
  25. H. Suzuki, T. Hashimoto, H. Matsuda, A study on electron-beam welding conditions of sheets of refractory metals, J. Jpn. Weld. Soc. 38 (1963) 378-383, https://doi.org/10.2207/qjjws1943.32.378, 4, (in Japanese).
  26. H. Suzuki, T. Hashimoto, H. Matsuda, Some experiments on properties of electron-beam welds of reactive metals and other alloys, J. Jpn. Weld. Soc. 38 (7) (1963) 618-627, https://doi.org/10.2207/qjjws1943.32.618 (in Japanese).
  27. H. Suzuki, T. Hashimoto, H. Matsuda, Effect of electron-beam welding parameters on characteristics of bead section, J. Jpn. Weld. Soc. 32 (1963) 609-617, https://doi.org/10.2207/qjjws1943.32.609, 7, (in Japanese).
  28. H. Suzuki, T. Hashimoto, H. Matsuda, Mechanism of penetration and bead shape in electron-beam welding, J. Jpn. Weld. Soc. 32 (1963) 503-513, https://doi.org/10.2207/qjjws1943.32.503, 6, (in Japanese).
  29. H. Suzuki, T. Hashimoto, H. Matsuda, Welding forces and bead formation mechanism in electron-beam welding, J. Jpn. Weld. Soc. 32 (1963) 996-1005, https://doi.org/10.2207/qjjws1943.32.996, 10, (in Japanese).
  30. T. Hashimoto, H. Matsuda, Calculation by thermal conduction theory and its discussion for the penetration depth in electron-beam weld bead, J. Jpn. Weld. Soc. 33 (1964) 726-734, https://doi.org/10.2207/qjjws1943.33.9_726, 9, (in Japanese).
  31. T. Hashimoto, H. Matsuda, On the cooling process and prediction of welds in electron-beam welding, J. Jpn. Weld. Soc. 33 (1964) 918-927, https://doi.org/10.2207/qjjws1943.33.10_918, 10, (in Japanese).
  32. T. Hashimoto, H. Matsuda, O. Ohashi, H. Irie, Experiments on soft-vacuum electron beam welding, J. Jpn. Weld. Soc. 38 (1969) 1090-1097, https://doi.org/10.2207/qjjws1943.38.10_1090, 10, (in Japanese).
  33. I.S. Lupakov, B.S. Rodchenkov, V.N. Vukolova, V.N. Tyurin, Structure and phase composition of weldments in the Zr-2.5Nb alloy, Met. Sci. Heat Treat. 15 (1973) 379-381, https://doi.org/10.1007/BF01166648, 5.
  34. E.Yu Rivkin, A.M. Vasnin, V.E. Mozharov, Resistance of zirconium alloys to fracture, Sov. Mater. Sci. 12:6 (1977) 589-593, https://doi.org/10.1007/BF00721752.
  35. V.N. Tyurin, B.G. Parfenov, A.I. Evstyukhin, YuF. Bychkov, M.I. Plyshevsky, N.A. Cherkasov, L.T. Rudenekaya, V.V. Osipov, N.S. Rassoshkina, Study of structural transformations in welded joints of zirconium alloys with niobium during heat treatment, in: V.S. Emelyanova, A.I. Evstyukhina (Eds.), Zirconium and its Alloys, Energy Publishing, Moscow, 1982, pp. 55-70 (in Russian).
  36. V.V. Ivanov, Fatigue crack propagation resistance of welded joints in a zirconium alloy with 2.5%Nb, Weld. Int. 1:9 (1987) 848-849, https://doi.org/10.1080/09507118709451107.
  37. V.N. Tyurin, Effect of rolling parameters on the structure and properties of welded joints in a zirconium alloy with 2.5%Nb, Weld. Int. 2:5 (1988) 449-451, https://doi.org/10.1080/09507118809447496.
  38. S.V. Rybakov, A.B. Levitskaya, Mechanical and corrosion properties of welded joints in a zirconium alloy when interacting with liquid cadmium and cesium, Weld. Int. 2 (1988) 20-22, https://doi.org/10.1080/09507118809451123, 1.
  39. YuA. Grigorovich, Mechanical properties of welded joints in zirconium alloys, Weld. Int. 3:12 (1989) 1063-1066, https://doi.org/10.1080/09507118909449082.
  40. M. Miura, K. Ogawa, Welding and bonding of zirconium and its alloys, Weld. Int. 3:7 (1989) 591-596, https://doi.org/10.1080/09507118909446619.
  41. T. Michio, A. Nobuyuki, H. Motomu, S. Tetsumi, Electron beam welding of zirconium plate, Trans. JWRI 19:1 (1990) 149-150. http://hdl.handle.net/11094/9918.
  42. V.A. Vinogradov, L.N. Shchavelev, V.S. Popenko, V.A. Sereznov, Welding components of the active zone of nuclear reactors, Weld. Int. 8:7 (1994) 546-549, https://doi.org/10.1080/09507119409548646.
  43. V.V. Melyukov, Effect of the optimum thermal welding conditions on residual strains and stresses in welded joints in Zr-2.5%Nb alloy, Weld. Int. 11: 8 (1997) 639-641, https://doi.org/10.1080/09507119709448447.
  44. M.I. Plyshevskii, N.S. Rassoshkina, A.N. Semenov, V.N. Tyurin, Effect of shielding conditions in welding and of surface preparation quality on corrosion resistance of welded joints in zirconium, Weld. Int. 15:6 (2001) 494-496, https://doi.org/10.1080/09507110109549394.
  45. A.G. Poptsov, V.V. Melyukov, A system for contactless control of the temperature field in welding and local heat treatment of pipes made of zirconium alloys, Weld. Int. 15:3 (2001) 235-237, https://doi.org/10.1080/09507110109549349.
  46. V.I. Vasilkov, A.A. Kislitsky, N.V. Onuchin, V.V. Rozhkov, A.V. Strukov, V.B. Chizhov, P.I. Lavrenyuk, On the causes of the formation of defects in E110 alloy welds made by electron beam welding and methods for dealing with them, Automat. Weld. 5 (2002) 41-43 (in Russian).
  47. S.A. Sirenko, Study of welded joining of the fuel rod end details with cladding of alloy Zr1Nb, produced different types of welding 182:13 (2003) 182-185. Questions of Atomic Science and Technology. Series: Vacuum, Pure Materials, Superconductors, (in Russian).
  48. Y.S. Kim, S.J. Choi, Y.M. Cheong, Review of the initiation and arrest temperatures for delayed hydride cracking in zirconium alloys, Met. Mater. Int. 11:1 (2005) 39-47. https://doi.org/10.1007/BF03027482
  49. E.M. Oks, Plasma Cathode Electron Sources: Physics, Technology, Applications, NTL, Tomsk, 2005 (in Russian).
  50. M.Y. Yao, B.X. Zhou, Q. Li, W.Q. Liu, Y.L. Chu, The effect of alloying modifications on hydrogen uptake of zirconium-alloy welding specimens during corrosion tests, J. Nucl. Mater. 350 (2006) 195-201, https://doi.org/10.1016/j.jnucmat.2005.12.005.
  51. V.V. Melyukov, A.G. Korepanov, D.A. Repkin, M.I. Plyshevskii, Controlling the thermal regime of combined welding and local thermocyclic treatment of circumferential welded joints, Weld. Int. 22:8 (2008) 544-548, https://doi.org/10.1080/09507110802383303.
  52. T.K. Saha, A.K. Ray, Vacuum e the ideal environment for welding of reactive materials, J. Phys. Conf. 114 (2008), 012047, https://doi.org/10.1088/1742-6596/114/1/012047.
  53. S. Tonpe, N. Saibaba, R.N. Jayaraj, A. Ravi Shankar, U. Kamachi Mudali, B. Raj, Process development for fabrication of Zircaloy-4 dissolver assembly for reprocessing of spent nuclear fuel, Energy Procedia 7 (2011) 459-467, https://doi.org/10.1016/j.egypro.2011.06.063.
  54. U. Kamachi Mudali, A. Ravi Shankar, R. Natarajan, N. Saibaba, B. Raj, Application of zirconium alloys for reprocessing plant components, Nucl. Technol. 182:3 (2013) 349-357, https://doi.org/10.13182/NT12-73.
  55. U. Kamachi Mudali, A. Ravi Shankar, Electrochemical and surface studies on Zircaloy-4 exposed to concentrated nitric acid medium, Trans. Indian Inst. Met. 62 (6) (2009) 545-549. https://doi.org/10.1007/s12666-009-0091-0
  56. A.N. Semenov, M.I. Plyshevskii, V.P. Gordo, N.S. Rassoshkina, Application of the method of design of an optimum experiment to determine the regimes of thermomechanical treatment of welded joints of zirconium alloys, Met. Sci. Heat Treat. 55:5-6 (2013) 265-269, https://doi.org/10.1007/s11041-013-9617-5.
  57. O. Muranskya, T.M. Holden, O. Kirstein, J.A. James, A.M. Paradowska, L. Edwards, Evaluation of residual stresses in electron-beam welded Zr2.5Nb0.9Hf Zircadyne flange mock-up of a reflector vessel beam tube flange, J. Nucl. Mater. 438 (2013) 154-162, https://doi.org/10.1016/j.jnucmat.2013.02.045.
  58. A.N. Semenov, M.I. Plyshevskii, V.P. Gordo, N.S. Rassoshkina, V.V. Melyukov, A.G. Korepanov, Optimization of the heating source in electron beam welding of zirconium pipes, Weld. Int. 27:4 (2013) 300-303, https://doi.org/10.1080/09507116.2012.715909.
  59. M.N. Jha, D.K. Pratihar, A.V. Bapat, V. Dey, M. Ali, A.C. Bagchi, Knowledgebased systems using neural networks for electron beam welding process of reactive material (Zircaloy-4), J. Intell. Manuf. 25 (2014) 1315-1333, https://doi.org/10.1007/s10845-013-0732-3.
  60. A.N. Semenov, M.I. Plyshevskii, V.V. Melyukov, A.G. Korepanov, N.S. Rassoshkina, A.A. Uvarov, Properties of welded joints from alloy Zr-2.5% Nb after electron-beam local thermocycling, Met. Sci. Heat Treat. 55 (2014) 670-674, https://doi.org/10.1007/s11041-014-9688-y, 11e12.
  61. P. Bendeich, V. Luzin, M. Law, Residual stresses in a welded Zircaloy cold neutron source containment vessel, Mater. Sci. Forum 777 (2014) 194-198. https://doi.org/10.4028/www.scientific.net/MSF.777.194.
  62. B. Zhang, X. Li, T. Wang, X. Wang, Microstructure and corrosion behavior of Zr-702 joined by electron beam welding, Vacuum 121 (2015) 159-165, https://doi.org/10.1016/j.vacuum.2015.08.005.
  63. G.R. Vadolia, K.P. Singh, Electron beam welding: study of process capability and limitations towards development of nuclear components, IOP Conf. Ser.: J. Phys. 823 (2017), 012040, https://doi.org/10.1088/1742-6596/823/1/012040.
  64. C.J. Pargaa, I.J. van Rooyen, B.D. Coryell, W.R. Lloyd, L.N. Valenti, H. Usman, Room temperature mechanical properties of electron beam welded Zircaloy4 sheet, J. Mater. Process. Technol. 241 (2017) 73-85, https://doi.org/10.1016/j.jmatprotec.2016.11.001.
  65. B. Bandi, S.K. Dinda, J. Kar, G.G. Roy, P. Srirangam, Effect of weld parameters on porosity formation in electron beam welded Zircaloy-4 joints: X-ray tomography study, Vacuum 158 (2018) 172-179, https://doi.org/10.1016/j.vacuum.2018.09.060.
  66. J. Vandegrift, C.J. Parga, B. Coryell, D.P. Butt, B.J. Jaques, Oxidation behavior of welded Zry-3, Zry-4, and Zr-1Nb tubes, Nucl. Mater. Energy 21 (2019), 100714, https://doi.org/10.1016/j.nme.2019.100714.
  67. L.-F. Wei, C. Bao, S.-Z. Wang, Y. Zheng, M.-B. Zhou, Low cycle fatigue properties of hydrogenated welding sheets of Zr-Sn-Nb alloy using funnel-shaped flat specimens, Nucl. Eng. Technol. 52 (8) (2020) 1724-1731, https://doi.org/10.1016/j.net.2020.01.011.
  68. H. Schultz, Electron Beam Welding, Abington Publishing, Cambridge, 1994.
  69. R.O. Cirimello, E.E. Perez, O. Saracco, S. Harriague, Recent developments in power reactor fuel in Argentina, in: International Symposium on Improvements in Water Reactor Fuel Technology and Utilization, 1986. Stockholm.
  70. F.L. Zhang, S.C. Zhang, W.D. He, Fuel design for extended burnup in a demonstration assembly, in: International Symposium on Improvements in Water Reactor Fuel Technology and Utilization, 1986. Stockholm.
  71. H.G. Weidinger, H. Lettau, Advanced material and fabrication technology for LWR fuel, in: International Symposium on Improvements in Water Reactor Fuel Technology and Utilization, 1986. Stockholm.
  72. G.B. Goncharov, V.F. Grabin, A.M. Korol, L.I. Adeeva, Structure and properties of welded joints in laser and arc welding Zr-2.5%Nb alloy, Weld. Int. 7:10 (1993) 798-801, https://doi.org/10.1080/09507119309548494.
  73. S.-S. Kim, C.-Y. Lee, M.-S. Yang, Investigation on Nd:YAG laser weldability of Zircaloy-4 end cap closure for nuclear fuel elements, J. Kor. Nucl. Soc. 33:2 (2001) 175-183.
  74. S.-S. Kim, J.-W. Lee, J.-H. Koh, Y.-H. Lee, Technology of the end cap laser welding for irradiation fuel rods, J. KWS 21:6 (2003) 626-631.
  75. Q. Wan, X. Bai, X. Liu, Impact of yttrium ion implantation on corrosion behavior of laser beam welded Zircaloy-4 in sulfuric acid solution, Appl. Surf. Sci. 252 (2005) 1974-1980, https://doi.org/10.1016/j.apsusc.2005.03.154.
  76. Q. Wan, X. Bai, X. Zhang, Impact of high dose krypton ion irradiation on corrosion behavior of laser beam welded Zircaloy-4, Mater. Res. Bull. 41 (2006) 387-395, https://doi.org/10.1016/j.materresbull.2005.08.007.
  77. K. Une, S. Ishimoto, Crystallographic measurement of the b to a phase transformation and d-hydride precipitation in a laser-welded Zircaloy-2 tube by electron backscattering diffraction, J. Nucl. Mater. 389 (2009) 436-442, https://doi.org/10.1016/j.jnucmat.2009.02.033.
  78. K.-N. Song, S.-S. Kim, S.-H. Lee, S.-B. Lee, Laser welding unit for intersection line welding of spacer grid inner straps and its application, J. Laser Micro/Nanoeng. 4 (2009) 11-17, https://doi.org/10.2961/jlmn.2009.01.0003, 1.
  79. N. Boutarek, B. Azzougui, D. Saidi, M. Neggache, Microstructure change in the interface of CO2 laser welded zirconium alloys, Phys. Procedia 2 (2009) 1159-1165, https://doi.org/10.1016/j.phpro.2009.11.078.
  80. K.-N. Song, S.-D. Hong, S.-H. Lee, H.-Y. Park, Effect of mechanical properties in the weld zone on the structural analysis results of a plate-type heat exchanger prototype and pressurized water reactor spacer grid, J. Nucl. Sci. Technol. 49 (9) (2012) 947-960, https://doi.org/10.1080/00223131.2012.713571.
  81. K.-N. Song, S.-H. Lee, Effect of weld properties on the crush strength of the PWR spacer grid, Sci. Technol. Nucl. Install. (2012), 540285, https://doi.org/10.1155/2012/540285.
  82. D.H. Jeong, J.H. Kim, J.K. Park, K.L. Jeon, S.K. Lee, J.M. Suh, Fatigue characteristics of laser welded Zircaloy thin sheet, Int. J. Mod. Phys. 6 (2012) 367-372, https://doi.org/10.1142/S2010194512003455.
  83. Q. Han, D. Kim, D. Kim, H. Lee, N. Kim, Laser pulsed welding in thin sheets of Zircaloy-4, J. Mater. Process. Technol. 212 (2012) 1116-1122, https://doi.org/10.1016/j.jmatprotec.2011.12.022.
  84. W. Tao, C. Cai, L. Li, Y. Chen, Y.L. Wang, Pulsed laser spot welding of intersection points for Zircaloy-4 spacer grid assembly, Mater. Des. 52 (2013) 487-494, https://doi.org/10.1016/j.matdes.2013.05.037.
  85. J. Hong, C.-Y. Joung, K.-H. Kim, S.-H. Heo, H.-G. Kim, Study on fiber laser welding conditions for the fabrication of a nuclear fuel rod, Int. J. Precis. Eng. Manuf. 15:4 (2014) 777-781, https://doi.org/10.1007/s12541-014-0399-5.
  86. S. Livingstone, L. Xiao, E.C. Corcoran, G.A. Ferrier, K.N. Potter, Development of laser welded appendages to Zircaloy-4 fuel tubing (sheath/cladding), Nucl. Eng. Des. 284 (2015) 97-105, https://doi.org/10.1016/j.nucengdes.2014.11.029.
  87. S. Kim, W. Lee, D. Kim, One-step distortion simulation of pulsed laser welding with multi-physics information, Int. J. Simulat. Model. 14:1 (2015) 85-97, https://doi.org/10.2507/IJSIMM14(1)8.291.
  88. S. Kim, W.-J. Lee, Q. Han, D. Kim, Pulsed laser induced mechanical behavior of Zircaloy-4, J. Mater. Res. 30:4 (2015) 556-565, https://doi.org/10.1557/jmr.2014.390.
  89. C. Cai, W. Tao, L. Li, Y. Chen, Weld bead formation and corrosion behavior of pulsed laser welded zirconium alloy, Int. J. Adv. Manuf. Technol. 77 (2015) 621-628, https://doi.org/10.1007/s00170-014-6474-3.
  90. C. Cai, L. Li, W. Tao, G. Peng, X. Wang, Weld bead size, microstructure and corrosion behavior of zirconium alloys joints welded by pulsed laser spot welding, J. Mater. Eng. Perform. 25 (9) (2016) 3783-3792, https://doi.org/10.1007/s11665-016-2250-x.
  91. L. Hu, D. Zhou, X. Jia, Y. Lu, Z. Tan, D. Jiang, Numerical simulation and laser butt welding of Zr-Sn-Nb-Fe zirconium alloy sheets, Zhongguo Jiguang Chin. J. Lasers 43:7 (2016), 0702002, https://doi.org/10.3788/CJL201643.0702002.
  92. J.-N. Yang, L.-J. Zhang, J. Ning, Q.-L. Bai, J.-Y. Pei, J.-Z. Liu, G.-F. Lu, J.-X. Zhang, Fiber laser welding characteristics of commercially pure zirconium (R60702) and structure-mechanics-corrosion performances of the joint, Int. J. Refract. Metals Hard Mater. 73 (2018) 58-73, https://doi.org/10.1016/j.ijrmhm.2018.01.023.
  93. G. Satyanarayana, K.L. Narayana, B. Nageswara Rao, Identification of optimum laser beam welding process parameters for E110 zirconium alloy butt joint based on Taguchi-CFD simulations, Lasers Manuf. Mater. Process. 5:2 (2018) 182-199, https://doi.org/10.1007/s40516-018-0061-7.
  94. G. Satyanarayana, K.L. Narayana, B. Nageswara Rao, Numerical simulations on the laser spot welding of zirconium alloy endplate for nuclear fuel bundle assembly, Lasers Manuf. Mater. Process. 5:1 (2018) 53-70, https://doi.org/10.1007/s40516-018-0061-7.
  95. C. Cai, L. Li, G. Peng, Comparative study of oxides formed on fusion zone and base metal of laser welded Zr-1.0Sn-1.0Nb-0.1Fe alloy, J. Mater. Eng. Perform. 28:2 (2019) 1161-1172, https://doi.org/10.1007/s11665-018-3836-2.
  96. M.A. Elkin, A.S. Kiselev, M.S. Slobodyan, Pulsed laser welding of Zre1%Nb alloy, Nucl. Eng. Technol. 51 (3) (2019) 776-783, https://doi.org/10.1016/j.net.2018.12.016.
  97. M.S. Slobodyan, S.K. Pavlov, G.E. Remnev, Corrosion and high-temperature steam oxidation of E110 alloy and its laser welds after ion irradiation, Corrosion Sci. 152 (2019) 60-74, https://doi.org/10.1016/j.corsci.2019.02.031.
  98. G. Satyanarayana, K.L. Narayana, B. Nageswara Rao, M.S. Slobodyan, M.A. Elkin, A.S. Kiselev, Numerical simulation of the processes of formation of a welded joint with a pulsed ND:YAG laser welding of Zr-1%Nb alloy, Therm. Eng. 66:3 (2019) 210-218, https://doi.org/10.1134/S0040601519030066.
  99. M.S. Slobodyan, V.N. Kudiiarov, A.M. Lider, Effect of energy parameters of pulsed laser welding of Zr-1%Nb alloy on metal contamination with gases and properties of welds, J. Manuf. Process. 45 (2019) 472-490, https://doi.org/10.1016/j.jmapro.2019.06.025.
  100. G.P. Sakamiti, R.H.M.D. Siqueira, S.M.D. Carvalho, J.B. Meireles, M.S.F.D. Lima, Weldability of a zirconium alloy comparing resistance and pulsed laser methods, Nucl. Mater. Energy 20 (2019), 100693, https://doi.org/10.1016/j.nme.2019.100693.
  101. J.F. Lancaster, The Physics of Welding, Pergamon Press, Oxford, 1986.
  102. R.K. Jain, D.K. Agrawal, S.C. Vishwakarma, A.K. Choubey, B.N. Upadhyaya, S.M. Oak, Development of underwater laser cutting technique for steel and zircaloy for nuclear applications, Pramana - J. Phys. 75:6 (2010) 1253-1258, https://doi.org/10.1007/s12043-010-0214-5.
  103. P.A. Leontiev, N.T. Chekanova, M.G. Khan, Laser Surface Treatment of Metals and Alloys, Metallurgy, Moscow, 1986.
  104. W. Reitz, J. Rawers, Immersion corrosion studies of laser processed zirconium, J. Mater. Sci. Lett. 9:3 (1990) 355-357, https://doi.org/10.1007/BF00725849.
  105. K.F. Amouzouvi, L.J. Clegg, R.C. Styles, Surface modifications of zirconium alloys by laser glazing, in: S.A. Meguid (Ed.), Surface Engineering, Springer, Dordrecht, 1990, pp. 270-279, https://doi.org/10.1007/978-94-009-0773-7_28.
  106. J. Rawers, W. Reitz, S. Bullard, E.K. Roub, Surface and corrosion study of laserprocessed zirconium alloys, Corrosion 47:10 (1991) 769-777, https://doi.org/10.5006/1.3585187.
  107. W. Reitz, J. Rawers, Effect of laser surface melted zirconium alloys on microstructure and corrosion, resistance, J. Mater. Sci. 27 (9) (1992) 2437-2443, https://doi.org/10.1007/BF01105055.
  108. M. Munidasa, M. Tian-Chi, A. Mandelis, S.K. Brown, L. Mannik, Nondestructive depth profiling of laser-processed Zr-2.5 Nb alloy by IR photothermal radiometry, Mater. Sci. Eng. 159:1 (1992) 111-118, https://doi.org/10.1016/0921-5093(92)90404-O.
  109. K.F. Amouzouvi, L.J. Clegg, R.C. Styles, L. Mannik, T.-C. Ma, S.K. Brown, B.-W. Gu, Microstructural changes in laser hardened Zr-2.5Nb alloy, Scripta Metall. Mater. 32 (2) (1995) 289-294, https://doi.org/10.1016/S0956-716X(99)80052-1.
  110. J. Xu, X. Bai, F. He, S. Wang, X. He, Y. Fan, Influence of Ar ion bombardment on the uniform corrosion resistance of laser-surface-melted Zircaloy-4, J. Nucl. Mater. 265 (3) (1999) 240-244, https://doi.org/10.1016/S0022-3115(98)00732-6.
  111. V.G. Kirichenko, A.I. Kirdin, T.A. Kovalenko, A.V. Ostapov, The influence of impulse laser irradiation on structure of surface lays zirconium alloys, Bulletin of Kharkov University. Series "Nuclei, parts, fields" 777 (2) (2007) 41-50, 34, (in Russian).
  112. L. Chai, B. Chen, S. Wang, Z. Zhou, W. Huang, Microstructural characteristics of a commercially pure Zr treated by pulsed laser at different powers, Mater. Char. 110 (2015) 25-32, https://doi.org/10.1016/j.matchar.2015.10.008.
  113. A. Harooni, A.M. Nasiri, A.P. Gerlich, A. Khajepour, A. Khalifa, J.M. King, Processing window development for laser cladding of zirconium on zirconium alloy, J. Mater. Process. Technol. 230 (2016) 263-271, https://doi.org/10.1016/j.jmatprotec.2015.11.028.
  114. L. Chai, B. Chen, S. Wang, N. Guo, C. Huang, Z. Zhou, W. Huang, Microstructural changes of Zr702 induced by pulsed laser surface treatment, Appl. Surf. Sci. 364 (2016) 61-68, https://doi.org/10.1016/j.apsusc.2015.12.105.
  115. B. Chen, L. Chai, S. Wang, N. Guo, B. Song, Z. Zhou, C. Huang, Investigation of microstructures of laser surface-treated Zr702 sheet using electron channeling contrast imaging and electron backscatter diffraction techniques, Surf. Coating. Technol. 296 (2016) 13-19, https://doi.org/10.1016/j.surfcoat.2016.03.099.
  116. L. Chai, H. Wu, S. Wang, K. Chen, T. Wang, J. Xia, Characterization of microstructure and hardness of a Zr-2.5Nb alloy surface-treated by pulsed laser, Mater. Chem. Phys. 198 (2017) 303-309, https://doi.org/10.1016/j.matchemphys.2017.06.032.
  117. L. Chai, S. Wang, H. Wu, N. Guo, H. Pan, L. Chen, K.L. Murty, B. Song, a/b Transformation characteristics revealed by pulsed laser-induced non-equilibrium microstructures in duplex-phase Zr alloy, Sci. China Technol. Sci. 60 (2017) 1255-1262, https://doi.org/10.1007/s11431-016-9038-y.
  118. L.J. Chai, S.Y. Wang, H. Wu, Z. Yang, H. Pan, B. Song, N. Guo, Bimodal plate structures induced by pulsed laser in duplex-phase Zr alloy, Sci. China Technol. Sci. 60 (2017) 587-592, https://doi.org/10.1007/s11431-016-0527-6.
  119. L. Chai, K. Chen, Y. Zhi, K.L. Murty, L.-Y. Chen, Z. Yang, Nanotwins induced by pulsed laser and their hardening effect in a Zr alloy, J. Alloys Compd. 748 (2018) 163-170, https://doi.org/10.1016/j.jallcom.2018.03.126.
  120. V. Proskuryakov, S. Mezentzov, I. Rodionov, Structure and hardness of the zirconium surface after laser modification, IOP Conf. Ser.: J. Phys. 1124 (2018), 081042, https://doi.org/10.1088/1742-6596/1124/8/081042.
  121. K. Chen, L. Zeng, Z. Li, L. Chai, Y. Wang, L.-Y. Chen, H. Yu, Effects of laser surface alloying with Cr on microstructure and hardness of commercial purity Zr, J. Alloys Compd. 784 (2019) 1106-1112, https://doi.org/10.1016/jjallcom.2019.01.097.
  122. J. Dai, K. Chen, L. Chai, Y. Zhu, H. Guan, N. Guo, Surface microstructural characteristics and hardness of Cr-coated Zr702 sheet processed by pulsed laser, Intermetallics 119 (2020) 106710, https://doi.org/10.1016/j.intermet.2020.106710.
  123. B. Lustman, F. Kerze (Eds.), The Metallurgy of Zirconium, McGraw-Hill Book Company, New York, 1955.
  124. V. Gheata, A.C. Galeriu, I. Dobos, F. Glodeanu, Experience gained in the fabrication of experimental fuel rods with natural uranium and Zircaloy-4 cladding for irradiation experiments, in: International Symposium on Water Reactor Fuel Element Fabrication with Special Emphasis on the Effect of Fabrication Technology on Fuel Performance, 1978. Prague.
  125. A.S. Bain, W.R. Tarasuk, K.T. Bates, D.G. Hardy, CANDU fuel e the influence of design on fuel performance, in: International Symposium on Water Reactor Fuel Element Fabrication with Special Emphasis on the Effect of Fabrication Technology on Fuel Performance, 1978. Prague.
  126. D.G. Hardy, J.C. Wood, V.F. Urbanic, Zirconium-niobium alloys as fuel cladding for water cooled reactors, in: I Nternational Symposium on Water Reactor Fuel Element Fabrication with Special Emphasis on the Effect of Fabrication Technology on Fuel Performance, 1978. Prague.
  127. R.A. Bordoni, A.M. Olmedo, Microstructure in the weld region in seam welded and resistance welded Zircaloy-4 tubing, J. Mater. Sci. 16 (1981) 1527-1532. https://doi.org/10.1007/BF02396870
  128. J.-H. Koh, J.-W. Lee, S.-H. Jung, The effect of weld line on the mechanical strengths and its elimination process in the Zr-4 resistance upset welds, J. Kor. Nucl. Soc. 23:1 (1991) 1-11.
  129. L.T. Babkin, K.K. Sukhov, D.V. Sannikov, A.Ya Yashunskii, O.K. Peslyak, Sealing of fuel elements for nuclear reactors by resistance butt welding, Weld. Int. 14:2 (2000) 162-164, https://doi.org/10.1080/09507110009549158.
  130. I.N. Sidorov, A.A. Gradovich, A.A. Kislitsky, V.V. Rozhkov, A.V. Strukov, I.G. Chapaev, P.I. Lavrenyuk Equipment for resistance upset welding of fuel elements of nuclear reactors, Automat. Weld. 3 (2002) 50-52 (in Russian).
  131. D.S. Setty, R.P. Ravinder, A.L.N. Murthy, Resistance butt welding of zirconium alloy material, Mater. Manuf. Process. 23:8 (2008) 844-851, https://doi.org/10.1080/10426910802384904.
  132. S.-S. Kim, G.-I. Park, J.-W. Lee, J.-H. Koh, C.-H. Park, Effect of heat on the soundness of Zircaloy-4 end cap closure using a resistance upset welding, J. Nucl. Sci. Technol. 47 (3) (2010) 262-268, https://doi.org/10.1080/18811248.2010.9711953.
  133. Z. Lin, F. Chen, G. Liang, Numerical simulation of residual stress and deformation of special resistance welding of nuclear power zirconium tube, Adv. Mater. Res. 154-155 (2011) 304-309. https://doi.org/10.4028/www.scientific.net/AMR.154-155.304.
  134. F. da Silva Junqueira, J.R. Silva, Development of a suitable weld geometry for pressure resistance welding of the leader test assembly (LTA'S) 16NGF fuel assembly fuel rod at ANGRA-1 nuclear power plant, in: International Nuclear Atlantic Conference, Recife, 2013.
  135. J.-Y. Park, T.-H. Na, T.-H. Lee, J.-H. Lee, B.-Y. Lee, J.-S. Kim, Effect of applied current on the formation of defect in PWR nuclear fuel rods in resistance pressure welding process, J. Nucl. Sci. Technol. 52 (5) (2015) 748-757, https://doi.org/10.1080/00223131.2014.971900.
  136. T.-H. Na, S.-J. Na, M.-H. Ko, D.-S. Hwang, Algorithm development for quality monitoring on end plug resistance weldment of nuclear fuel rods, Int. J. Adv. Manuf. Technol. 85 (5-8) (2016) 991-1006, https://doi.org/10.1007/s00170-015-7997-y.
  137. T.-H. Na, S.-J. Na, Y.-W. Park, A study on characteristics of end plug resistance welding process in nuclear fuel rods by experiment and numerical simulation, Int. J. Adv. Manuf. Technol. 98 (2018) 2241-2255, https://doi.org/10.1007/s00170-018-2365-3.
  138. T.-H. Na, B.-H. Lee, M.-W. Kim, S.-J. Na, Quality monitoring of end plug resistance weldment for nuclear fuel rods by electrode displacement, Int. J. Adv. Manuf. Technol. 99 (2018) 2509-2522, https://doi.org/10.1007/s00170-018-2642-1.
  139. S.-S. Kim, D.-S. Koo, G.-I. Park, J.-H. Koh, Remote resistance welding of Zr-4 endplate for DUPIC fuel fabrication, Mater. Sci. Forum 580-582 (2008) 397-400. https://doi.org/10.4028/www.scientific.net/MSF.580-582.397.
  140. S.-S. Kim, J.-W. Lee, G.-I. Park, J.-H. Koh, Development of Zircaloy-4 endplate welding technology for a DUPIC fuel bundle assembly, J. Nucl. Sci. Technol. 46:2 (2009) 103-108, https://doi.org/10.1080/18811248.2007.9711512.
  141. N.A.P. Kiran Kumar, J.A. Szpunar, Z. He, Microstructural studies and crystallographic orientation of different zones and d-hydrides in resistance welded Zircaloy-4 sheets, J. Nucl. Mater. 414 (2011) 341-351, https://doi.org/10.1016/j.jnucmat.2011.03.027.
  142. S. Kim, K. Kim, J. Lee, J. Koh, Design and Fabrication of Remote Welding Equipment in a hot-cell, Science and Technology of Nuclear Installations, 2013, 970942, https://doi.org/10.1155/2013/970942.
  143. H. Suzuki, T. Hashimoto, F. Matsuda, K. Tanuma, Spot welding of zirconium and Zircaloy-2 alloy sheets, J. Jpn. Weld. Soc. 30:6 (1961) 418-428, https://doi.org/10.2207/qjjws1943.30.418 (in Japanese).
  144. A.M. Olmedo, Microstructure of the weld region in resistance-welded Zircaloy-4, J. Mater. Sci. 15 (1980) 1050-1051. https://doi.org/10.1007/BF00552120
  145. S. Mishra, R.T. Savalia, K. Bhanumurthy, G.K. Dey, S. Banerjee, Characterisation of metallic glass incorporated Zircaloy-2 weldments, J. Nucl. Mater. 227 (1995) 122-129. https://doi.org/10.1016/0022-3115(95)00105-0
  146. E.V. Yudina, T.M. Poletika, S.F. Gnyusov, L.B. Zuev, Examination of the structural condition of welded joints in zirconium elements of nuclear reactors, Weld. Int. 20:12 (2006) 965-969, https://doi.org/10.1533/wint.2006.3708.
  147. S.F. Gnyusov, A.S. Kiselev, M.S. Slobodyan, B.F. Sovetchenko, M.M. Nekhoda, A.V. Strukov, P.M. Yurin, Formation of a joint in resistance spot microwelding, Weld. Int. 19 (2005) 737-741, https://doi.org/10.1533/wint.2005.3510, 9.
  148. M.S. Slobodyan, A.S. Kiselev, Optimization of welding parameters for smallscale resistance spot welding of zirconium alloys, Mater. Sci. Forum 970 (2019) 145-152. https://doi.org/10.4028/www.scientific.net/MSF.970.145.
  149. A.S. Kiselev, M.S. Slobodyan, Effects of electrode degradation on properties of small-scale resistance spot welded joints of E110 alloy, Mater. Sci. Forum 970 (2019) 227-235. https://doi.org/10.4028/www.scientific.net/MSF.970.227.
  150. E.Z. Akbolatov, A.S. Kiselev, M.S. Slobodyan, Prediction and stabilization of initial resistance between electrodes for small-scale resistance spot welding, Weld. World 63:2 (2019) 443-457, https://doi.org/10.1007/s40194-018-0671-x.
  151. J.B. Meireles, G.P. Sakamiti, J.A. de Castro, Evaluation of electrodes of the resistance spot welding with a chromium coating on the welding of Zircalloy, Soldagem Inspegao 23:3 (2018) 350-363, https://doi.org/10.1590/0104-9224/SI2303.05 (in Portuguese).
  152. A.B. Aleksandrov, YuA. Zhukov, V.N. Vasyukov, I.S. Gruzman, YuK. Karlov, V.G. Marchenko, A.A. Spektor, Automatic detection of spills and gas pockets upon ultrasonic checking of welds in zirconium fuel claddings, Russ. J. Nondestr. Test. 40:4 (2004) 233-238, https://doi.org/10.1023/B:RUNT.0000043671.04266.cb.
  153. J. Fu, R. Tan, Q. Wang, J. Deng, M. Liu, A cone beam computed tomography inspection method for fuel rod cladding tubes, Nucl. Instrum. Methods Phys. Res. 688 (2012) 1-6, https://doi.org/10.1016/j.nima.2012.05.093.
  154. M.N.V. Viswanath, K.R. Subramanyam, K.S. Subramanian, B. Prahlad, R.N. Jayaraj, Evolution of ultrasonic testing for end closure welds for PHWR fuel elements at NFC, in: 18th World Conference on NDT, 2012. Durban, South Africa.
  155. YuK. Karlov, Development and Implementation of Automated Complexes of Non-destructive Testing of Nuclear Fuel, TPU, Tomsk, 2016 (in Russian).

Cited by

  1. Fabrication of Copper Alloys as Conductive Materials via Laser Beam Powder Bed Fusion vol.10, pp.4, 2021, https://doi.org/10.7791/jspmee.10.265
  2. Incorporation of Taguchi approach with CFD simulations on laser welding of spacer grid fuel rod assembly vol.269, 2021, https://doi.org/10.1016/j.mseb.2021.115182
  3. High-energy surface processing of zirconium alloys for fuel claddings of water-cooled nuclear reactors vol.382, 2021, https://doi.org/10.1016/j.nucengdes.2021.111364