• Title/Summary/Keyword: Nuclear $factor-{\kappa}B$

Search Result 1,031, Processing Time 0.03 seconds

Anti-neuroinflammatory Effect of Teleogryllus emma Derived Teleogryllusine in LPS-stimulated BV-2 Microglia (BV-2 미세아교세포에서 왕귀뚜라미 유래 Teleogryllusine의 신경염증 억제 효과)

  • Seo, Minchul;Shin, Yong Pyo;Lee, Hwa Jeong;Baek, Minhee;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.999-1006
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells, well known as the main immune cells in the central nervous system (CNS), are considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Teleogryllus emma is widely consumed around the world for its broad-spectrum therapeutic effect. In a previous work, we performed transcriptome analysis on T. emma in order to obtain the diversity and activity of its antimicrobial peptides (AMPs). AMPs are found in a variety of species, from microorganisms to mammals. They have received much attention as candidates oftherapeutic drugs for the treatment of inflammation-associated diseases. In this study, we investigated the anti-neuroinflammatory effect of Teleogryllusine (VKWKRLNNNKVLQKIYFVKI-NH2) derived from T. emma on lipopolysaccharide (LPS) induced BV-2 microglia cells. Teleogryllusine significantly inhibited nitric oxide (NO) production without cytotoxicity, and reducing pro-inflammatory enzymes expression such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, Telegryllusine also inhibited the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) through down-regulation of the mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathway. These results suggest that T. emma-derived Teleogryllusine could be a good source of functional substances that prevent neuroinflammation and neurodegenerative diseases.

Anti-Inflammatory Effect of Wheat Germ Oil on Lipopolysaccharide-stimulated RAW 264.7 Cells and Mouse Ear Edema (LPS로 유도한 RAW 264.7 세포 및 귀부종 동물 모델에 대한 밀배아유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Jeong, Da-Hyun;Kim, Koth-Bong-Woo-Ri;Bae, Nan-Young;Park, Ji-Hye;Park, Sun-Hee;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.236-245
    • /
    • 2016
  • This study investigated the anti-inflammatory effects of wheat germ oil (WGO) on RAW 264.7 cells. It was shown that WGO had no cytotoxicity against the treated cells or negative effect on their proliferation. WGO suppressed nitric oxide (NO) secretion considerably and had inhibitory effects on the production of LPS-induced NO and pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). In particular, the IL-6 and TNF-α inhibition activities were over 90% at 100 μg/ml concentration of the oil. WGO also inhibited the LPS-induced expression of cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-kappa B (NF-κB), and reduced the expression of phosphorylated ERK and JNK. Moreover, the croton-oil-induced edema in mouse ears was reduced by WGO, and no mortalities occurred in mice administered 5,000 mg/kg body weight of WGO over a 2-week observation period. In conclusion, these results provide evidence for the anti-inflammatory effect of WGO that likely occurs via modulation of NF-κB and the JNK/ERK MAPK signaling pathway.

Effect of adipose-derived stem cells on bone healing on titanium implant in tibia of diabetes mellitus induced rats (당뇨 유도 백서 경골에 매식한 티타늄 임플란트 주위에 지방조직 유래 줄기세포 적용 시 골치유에 미치는 영향)

  • Kim, Min-Gu;Jung, In-Kyo;Shin, Sang-Hun;Kim, Chul-Hoon;Kim, Bok-Joo;Kim, Jung-Han;Hwang, Young-Sup;Jung, Eu-Gene;Kim, Jin-Woo;Kim, Uk-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.5
    • /
    • pp.392-401
    • /
    • 2010
  • Introduction: Diabetes mellitus, as a major health problem for the elderly has been shown to alter the properties of the bone and impair bone healing around a titanium implant in both humans and animals. The aim of this study was to examine the effect of adipose-derived stem cells on the healing process around a titanium implant in streptozotocin-induced diabetic rats. Materials and Methods: Thirteen rats were divided into two groups: adipose-derived stem cells injected group and a control group. A titanium screw implant (diameter: 2.0 mm, length: 3.5 mm) was placed into both tibia of 13 rats: 13 right tibia as the control group and 13 left tibia as the experimental group. The rats were sacrificed at different intervals (1, 2, and 4 weeks) after implantation for histopathology observations and immunohistochemistric analysis. Results: The histopathological findings revealed earlier new formed bone in the experimental group than the control group. In particular, at 1 week after implantation, the experimental group showed more newly formed bone and collagen around the implant than the control group. In immunohistochemistric analysis, osteoprotegerin (OPG) expression in the experimental group increased early compared to that of the control group until 2 weeks after implantation. However, after 2 weeks, OPG expression in the experimental group was similar to OPG expression in the control group. The receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) expression in the experimental group increased early compared to that of the control group, and then decreased at 2 weeks. After 2 weeks, the level of RANKL expression was similar in both groups. Conclusion: These results suggest that adipose-derived stem cells in implantation can promote bone healing around titanium, particularly in diabetes mellitus induced animals.

Expression of osteoclastogenesis related factors in dental implant patients (치과 임플란트에서 골개조 관련인자의 발현에 관한 연구)

  • Ryu, Seong-Hee;Kim, Bang-Sin;Jung, Seung-Gon;Han, Man-Seung;Kook, Min-Suk;Ohk, Seung-Ho;Oh, Hee-Kyun;Park, Hong-Ju
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.5
    • /
    • pp.386-391
    • /
    • 2010
  • Introduction: Bone resorption is a unique function of osteoclasts. Osteoclasts are a specialized macrophage polykaryon whose differentiation is regulated principally by macrophage colony-stimulating factors, receptor activator of nuclear factor ${\kappa}B$ ligand (RANK) ligand, osteoprotegerin (OPG), and interleukins (IL). Reflecting the integrin-mediated signals, osteoclasts develop a specialized cytoskeleton that allows it to establish an isolated micro-environment between itself and the bone, wherein matrix degradation occurs by a process involving proton transport. The levels of IL-1, IL-6, OPG, and prostaglandin $E_2$ ($PGE_2$) expression were evaluated to study the correlations between dental implant teeth and the adjacent teeth. Materials and Methods: The exudate of the gingival crevice acquired from dental implants, adjacent teeth, opposite teeth and contralateral teeth of 24 patients. Results: 1. The levels of IL-1, IL-6, OPG and $PGE_2$ expression in dental implant teeth were higher than those of the contralateral teeth. 2. IL-1 revealed a higher expression level in the adjacent teeth than in dental implant teeth. 3. The dental implant teeth and adjacent teeth did not show a remarkable difference in the level of IL-1 expression. 4. All the other cytokines were strongly expressed in the dental implant compared to the adjacent teeth. Conclusion: These results suggest that there might be close correlation between dental implant teeth and adjacent teeth in terms of the expressions of cytokines that affect the development and regulation of osteoclasts.

Conditioned Medium of Soybean Extract Treated Osteoblasts Inhibits RANKL Induced Differentiation of Osteoclasts (대두추출물을 처리한 조골세포 조건배양액은 RANKL에 의해 유도된 파골세포 분화를 억제)

  • Park, Kyung-Ho;Ju, Won-Chul;Yeo, Joo-Hong;Lee, Kwang-Gill;Cho, Yun-Hi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • Soybean is of particular interest as a food supplement of isoflavones for inhibiting bone resorption in postmenopausal woman. These beneficial effects of isoflavones are caused by functioning as partial agonists or antagonists of estrogen, of which anti-resorptive effect is mediated indirectly through paracrine factors produced by osteoblasts that act on osteoclasts. In this study, the indirect effect of soybean on osteoclastic differentiation of RAW264.7 cells were investigated. The conditioned medium was collected from MC3T3-E1 osbeoblasts treated with 0.001 mg/mL~0.1 mg/mL soybean extracts for 6 days, mixed in 1:1 ratio with osteoclast medium, and then added into RAW264.7 cells with receptor activator of nuclear factor kappa B ligand (RANKL), a differentiation inducer for 3 days. Of paracrine factors in the conditioned medium, the protein expression of osteoprotegerin (OPG) with soybean extract was specifically higher in a dose dependent manner than with $10^{-9}$ M~$10^{-6}$ M of estrogen, genistein or daidzein standards. In RAW264.7 cells, the conditioned medium with soybean inhibited RANKL induced osteoclastic differentiation as total number of multinucleated tartrateresistant alkaline phosphatase (TRAP)-positive osteoclasts and protein expression of MMP-9 were significantly decreased. Coupled with the low expression of estrogen receptor $\alpha$ and $\beta$ proteins in RANKL treated RAW264.7 cells, we demonstrate that the conditioned medium of soybean treated osteoblasts inhibits RANKL induced differentiation of osteoclasts with the selective expression of OPG in osteoblasts.

EphA2 Receptor Signaling Mediates Inflammatory Responses in Lipopolysaccharide-Induced Lung Injury

  • Hong, Ji Young;Shin, Mi Hwa;Chung, Kyung Soo;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Kim, Young Sam;Kim, Se Kyu;Chang, Joon;Park, Moo Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.218-226
    • /
    • 2015
  • Background: Eph receptors and ephrin ligands have several functions including angiogenesis, cell migration, axon guidance, fluid homeostasis, oncogenesis, inflammation and injury repair. The EphA2 receptor potentially mediates the regulation of vascular permeability and inflammation in response to lung injury. Methods: Mice were divided into 3 experimental groups to study the role of EphA2 signaling in the lipopolysaccharide (LPS)-induced lung injury model i.e., IgG+phosphate-buffered saline (PBS) group (IgG instillation before PBS exposure), IgG+LPS group (IgG instillation before LPS exposure) and EphA2 monoclonal antibody (mAb)+LPS group (EphA2 mAb pretreatment before LPS exposure). Results: EphA2 and ephrinA1 were upregulated in LPS-induced lung injury. The lung injury score of the EphA2 mAb+LPS group was lower than that of the IgG+LPS group ($4.30{\pm}2.93$ vs. $11.45{\pm}1.20$, respectively; p=0.004). Cell counts (EphA2 mAb+LPS: $11.33{\times}10^4{\pm}8.84{\times}10^4$ vs. IgG+LPS: $208.0{\times}10^4{\pm}122.6{\times}10^4$; p=0.018) and total protein concentrations (EphA2 mAb+LPS: $0.52{\pm}0.41mg/mL$ vs. IgG+LPS: $1.38{\pm}1.08mg/mL$; p=0.192) were decreased in EphA2 mAb+LPS group, as compared to the IgG+LPS group. In addition, EphA2 antagonism reduced the expression of phospho-p85, phosphoinositide 3-kinase $110{\gamma}$, phospho-Akt, nuclear factor ${\kappa}B$, and proinflammatory cytokines. Conclusion: This results of the study indicated a role for EphA2-ephrinA1 signaling in the pathogenesis of LPS-induced lung injury. Furthermore, EphA2 antagonism inhibits the phosphoinositide 3-kinase-Akt pathway and attenuates inflammation.

Increase in Intracellular Calcium is Necessary for RANKL Induction by High Extracellular Calcium

  • Jun, Ji-Hae;Kim, Hyung-Keun;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • Recently, we reported that high extracellular calcium increased receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) expression via p44/42 mitogen-activated protein kinase (p44/42 MAPK) activation in mouse osteoblasts. However, the mechanism for p44/42 MAPK activation by high extracellular calcium is unclear. In this study, we examined the role of intracellular calcium increase in high extracellular calcium-induced RANKL induction and p44/42 MAPK activation. Primary cultured mouse calvarial osteoblasts were used. RANKL expression was highly induced by 10 mM calcium treatment. Ionomycin, a calcium ionophore, also increased RANKL expression and activated p44/42 MAPK. U0126, an inhibitor of MEK1/2, an upstream activator of p44/42 MAPK, blocked the RANKL induction by both high extracellular calcium and ionomycin. High extracellular calcium increased the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), one of the known upstream regulators of p44/42 MAPK activation. Bisindolylmaleimide, an inhibitor of protein kinase C, did not block RANKL induction and p44/42 MAPK activation induced by high extracellular calcium. 2-Aminoethoxydiphenyl borate, an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor, blocked the RANKL induction by high extracellular calcium. It also partially suppressed the activation of Pyk2 and p44/42 MAPK. Cyclosporin A, an inhibitor of calcineurin, also inhibited high calcium-induced RANKL expression in dose dependent manner. However, cyclosporin A did not affect the activation of Pyk2 and p44/42 MAPK by high extracellular calcium treatment. These results suggest that 1) the increase in intracellular calcium via IP3-mediated calcium release is necessary for RANKL induction by high extracellular calcium treatment, 2) Pyk2 activation, but not protein kinase C, following the increase in intracellular calcium might be involved in p44/42 MAPK activation, and 3) calcineurin-NFAT activation by the increase in intracellular calcium is involved in RANKL induction by high extracellular calcium treatment.

Effect of Saururus Chinensis in RANKL-induced Osteoclast Differentiation (삼백초 추출물이 뼈 파괴세포 분화에 미치는 효과)

  • Kim, Jung Young;Hyuk, Jungjong;Lee, Myeung Su;Lee, Chang Hoon;Kim, Yun Kyung;Jeon, Byung Hoon;Kwak, Han Bok;Kim, Ju-Young;Choi, Min-Kyu;Kim, Jeong Joong;Oh, Jaemin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.869-873
    • /
    • 2012
  • Balance between bone-forming osteoblasts and bone-resorbing osteoclasts is important in bone homeostasis. Unusual balance between bone-forming osteoblasts and bone-resorbing osteoclasts leads to bone diseases, such as osteoporosis. Saururus chinensis has been widely used in oriental medicine. Saururus chinensis has been known that has antioxidant and anticancer effect. But, the effect of Saururus chinensis in osteoclast differentation remains unknown. We examined the effect of Saururus chinensis in receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. From the results of our study, we found that saururus chinensis clearly inhibited RANKL-induced osteoclast differentiation in bone marrow macrophages (BMM) in a dose dependent manner without toxicity. Saururus chinensis inhibited the phosphorylation of JNK, P38, AKT, and ERK induced by RANKL. The mRNA expression of NFATc1, TRAP, and OSCAR induced by RANKL was inhibited by Saururus chinensis treatment. Moreover Saururus chinensis suppressed the protein expression of c-Fos and NFATc1 in BMMs treated with RANKL. These results suggest that Saururus chinensis may be a useful drug in the treatment of bone-related disease.

Mycobacterium abscessus ᴅ-alanyl-ᴅ-alanine dipeptidase induces the maturation of dendritic cells and promotes Th1-biased immunity

  • Lee, Seung Jun;Jang, Jong-Hwa;Yoon, Gun Young;Kang, Da Rae;Park, Hee Jo;Shin, Sung Jae;Han, Hee Dong;Kang, Tae Heung;Park, Won Sun;Yoon, Young Kyung;Soh, Byoung Yul;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.554-559
    • /
    • 2016
  • Mycobacterium abscessus, a member of the group of non-tuberculous mycobacteria, has been identified as an emerging pulmonary pathogen in humans. However, little is known about the protective immune response of antigen-presenting cells, such as dendritic cells (DCs), which guard against M. abscessus infection. The M. abscessus gene MAB1843 encodes ᴅ-alanyl-ᴅ-alanine dipeptidase, which catalyzes the hydrolysis of ᴅ-alanyl-ᴅ-alanine dipeptide. We investigated whether MAB1843 is able to interact with DCs to enhance the effectiveness of the host's immune response. MAB1843 was found to induce DC maturation via toll-like receptor 4 and its downstream signaling pathways, such as the mitogen-activated protein kinase and nuclear factor kappa B pathways. In addition, MAB1843-treated DCs stimulated the proliferation of T cells and promoted Th1 polarization. Our results indicate that MAB1843 could potentially regulate the immune response to M. abscessus, making it important in the development of an effective vaccine against this mycobacterium.

Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish

  • Jeong, Jin-Woo;Cha, Hee-Jae;Han, Min Ho;Hwang, Su Jung;Lee, Dae-Sung;Yoo, Jong Su;Choi, Il-Whan;Kim, Suhkmann;Kim, Heui-Soo;Kim, Gi-Young;Hong, Su Hyun;Park, Cheol;Lee, Hyo-Jong;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.146-156
    • /
    • 2018
  • Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$), and cytokines including tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$ in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of $NF-{\kappa}B$ p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.