References
- Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 2002;3:475-86. https://doi.org/10.1038/nrm856
- Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell 2008;133:38-52. https://doi.org/10.1016/j.cell.2008.03.011
- Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, et al. Eph/Ephrin signaling in injury and inflammation. Am J Pathol 2012;181:1493-503. https://doi.org/10.1016/j.ajpath.2012.06.043
- Beauchamp A, Debinski W. Ephs and ephrins in cancer: ephrin-A1 signalling. Semin Cell Dev Biol 2012;23:109-15. https://doi.org/10.1016/j.semcdb.2011.10.019
- Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 2004;15:419-33. https://doi.org/10.1016/j.cytogfr.2004.09.002
- Pratt RL, Kinch MS. Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade. Oncogene 2002;21:7690-9. https://doi.org/10.1038/sj.onc.1205758
- Miao H, Burnett E, Kinch M, Simon E, Wang B. Activation of EphA2 kinase suppresses integrin function and causes focaladhesion-kinase dephosphorylation. Nat Cell Biol 2000;2:62-9. https://doi.org/10.1038/35000008
- Liu DP, Wang Y, Koeffler HP, Xie D. Ephrin-A1 is a negative regulator in glioma through down-regulation of EphA2 and FAK. Int J Oncol 2007;30:865-71.
- Carpenter TC, Schroeder W, Stenmark KR, Schmidt EP. Eph-A2 promotes permeability and inflammatory responses to bleomycin-induced lung injury. Am J Respir Cell Mol Biol 2012;46:40-7. https://doi.org/10.1165/rcmb.2011-0044OC
- Cercone MA, Schroeder W, Schomberg S, Carpenter TC. EphA2 receptor mediates increased vascular permeability in lung injury due to viral infection and hypoxia. Am J Physiol Lung Cell Mol Physiol 2009;297:L856-63. https://doi.org/10.1152/ajplung.00118.2009
- Ivanov AI, Steiner AA, Scheck AC, Romanovsky AA. Expression of Eph receptors and their ligands, ephrins, during lipopolysaccharide fever in rats. Physiol Genomics 2005;21:152-60. https://doi.org/10.1152/physiolgenomics.00043.2004
- Hedrich HJ. The laboratory mouse. Amsterdam: Elsevier Academic Press; 2004.
- Fang WF, Cho JH, He Q, Lin MC, Wu CC, Voelkel NF, et al. Lipid A fraction of LPS induces a discrete MAPK activation in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2007;293:L336-44. https://doi.org/10.1152/ajplung.00011.2007
- Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005;353:1685-93. https://doi.org/10.1056/NEJMoa050333
- Nasreen N, Khodayari N, Sriram PS, Patel J, Mohammed KA. Tobacco smoke induces epithelial barrier dysfunction via receptor EphA2 signaling. Am J Physiol Cell Physiol 2014;306:C1154-66. https://doi.org/10.1152/ajpcell.00415.2012
- Kustermans G, El Benna J, Piette J, Legrand-Poels S. Perturbation of actin dynamics induces NF-kappaB activation in myelomonocytic cells through an NADPH oxidase-dependent pathway. Biochem J 2005;387(Pt 2):531-40. https://doi.org/10.1042/BJ20041318
- Nemeth ZH, Deitch EA, Davidson MT, Szabo C, Vizi ES, Hasko G. Disruption of the actin cytoskeleton results in nuclear factor-kappaB activation and inflammatory mediator production in cultured human intestinal epithelial cells. J Cell Physiol 2004;200:71-81. https://doi.org/10.1002/jcp.10477
- Kustermans G, El Mjiyad N, Horion J, Jacobs N, Piette J, Legrand-Poels S. Actin cytoskeleton differentially modulates NF-kappaB-mediated IL-8 expression in myelomonocytic cells. Biochem Pharmacol 2008;76:1214-28. https://doi.org/10.1016/j.bcp.2008.08.017
- Ardeshna KM, Pizzey AR, Devereux S, Khwaja A. The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 2000;96:1039-46.
- Beraud C, Henzel WJ, Baeuerle PA. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NFkappaB activation. Proc Natl Acad Sci U S A 1999;96:429-34. https://doi.org/10.1073/pnas.96.2.429
- Kane LP, Shapiro VS, Stokoe D, Weiss A. Induction of NFkappaB by the Akt/PKB kinase. Curr Biol 1999;9:601-4. https://doi.org/10.1016/S0960-9822(99)80265-6
- Manna SK, Aggarwal BB. Wortmannin inhibits activation of nuclear transcription factors NF-kappaB and activated protein-1 induced by lipopolysaccharide and phorbol ester. FEBS Lett 2000;473:113-8. https://doi.org/10.1016/S0014-5793(00)01501-5
- Yum HK, Arcaroli J, Kupfner J, Shenkar R, Penninger JM, Sasaki T, et al. Involvement of phosphoinositide 3-kinases in neutrophil activation and the development of acute lung injury. J Immunol 2001;167:6601-8. https://doi.org/10.4049/jimmunol.167.11.6601
- Holen HL, Shadidi M, Narvhus K, Kjosnes O, Tierens A, Aasheim HC. Signaling through ephrin-A ligand leads to activation of Src-family kinases, Akt phosphorylation, and inhibition of antigen receptor-induced apoptosis. J Leukoc Biol 2008;84:1183-91. https://doi.org/10.1189/jlb.1207829
- Cheng N, Brantley DM, Liu H, Lin Q, Enriquez M, Gale N, et al. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 2002;1:2-11. https://doi.org/10.1186/1476-4598-1-2
- Pandey A, Shao H, Marks RM, Polverini PJ, Dixit VM. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNFalpha-induced angiogenesis. Science 1995;268:567-9. https://doi.org/10.1126/science.7536959
- Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets 2011;15:31-51. https://doi.org/10.1517/14728222.2011.538682
- Chee CE, Krishnamurthi S, Nock CJ, Meropol NJ, Gibbons J, Fu P, et al. Phase II study of dasatinib (BMS-354825) in patients with metastatic adenocarcinoma of the pancreas. Oncologist 2013;18:1091-2. https://doi.org/10.1634/theoncologist.2013-0255
- Annunziata CM, Kohn EC, LoRusso P, Houston ND, Coleman RL, Buzoianu M, et al. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest New Drugs 2013;31:77-84. https://doi.org/10.1007/s10637-012-9801-2
Cited by
- EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis vol.136, pp.6, 2017, https://doi.org/10.1161/circulationaha.116.026644
- Targeted delivery of YSA-functionalized and non-functionalized polymeric nanoparticles to injured pulmonary vasculature vol.46, pp.suppl3, 2015, https://doi.org/10.1080/21691401.2018.1528984
- MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2 vol.20, pp.None, 2015, https://doi.org/10.1186/s13075-018-1528-9
- Ephrins and Eph Receptor Signaling in Tissue Repair and Fibrosis vol.21, pp.6, 2015, https://doi.org/10.1007/s11926-019-0825-x
- Impact of Bacterial Toxins in the Lungs vol.12, pp.4, 2015, https://doi.org/10.3390/toxins12040223
- EphA2 phosphorylates NLRP 3 and inhibits inflammasomes in airway epithelial cells vol.21, pp.7, 2015, https://doi.org/10.15252/embr.201949666
- Insights on the Functional Role of Beta-Glucans in Fungal Immunity Using Receptor-Deficient Mouse Models vol.22, pp.9, 2021, https://doi.org/10.3390/ijms22094778
- A Putative Single-Photon Emission CT Imaging Tracer for Erythropoietin-Producing Hepatocellular A2 Receptor vol.12, pp.8, 2015, https://doi.org/10.1021/acsmedchemlett.1c00030