Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.272

Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish  

Jeong, Jin-Woo (Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine)
Cha, Hee-Jae (Departments of Parasitology and Genetics, Kosin University College of Medicine)
Han, Min Ho (Natural products Research Team, Marine Biodiversity Institute of Korea)
Hwang, Su Jung (Department of Pharmacy, College of Pharmacy, Inje University)
Lee, Dae-Sung (Natural products Research Team, Marine Biodiversity Institute of Korea)
Yoo, Jong Su (Natural products Research Team, Marine Biodiversity Institute of Korea)
Choi, Il-Whan (Department of Microbiology, College of Medicine, Inje University)
Kim, Suhkmann (Department of Chemistry, College of Natural Sciences, Pusan National University)
Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Kim, Gi-Young (Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University)
Hong, Su Hyun (Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine)
Park, Cheol (Department of Molecular Biology, College of Natural Sciences & Human Ecology, Dongeui University)
Lee, Hyo-Jong (Department of Pharmacy, College of Pharmacy, Inje University)
Choi, Yung Hyun (Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine)
Publication Information
Biomolecules & Therapeutics / v.26, no.2, 2018 , pp. 146-156 More about this Journal
Abstract
Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$), and cytokines including tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$ in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of $NF-{\kappa}B$ p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.
Keywords
Spermidine; Macrophages; Zebrafish; Anti-Inflammation; Anti-Oxidant;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Eom, S. A., Kim, D. W., Shin, M. J., Ahn, E. H., Chung, S. Y., Sohn, E. J., Jo, H. S., Jeon, S. J., Kim, D. S., Kwon, H. Y., Cho, S. W., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2015) Protective effects of PEP-1-catalase on stress-induced cellular toxicity and MPTP-induced Parkinson's disease. BMB Rep. 48, 395-400.   DOI
2 Freire, M. O. and Van Dyke, T. E. (2013) Natural resolution of inflammation. Periodontol. 2000 63, 149-164.   DOI
3 Ginsburg, I. and Koren, E. (2008) Are cationic antimicrobial peptides also 'double-edged swords'? Expert Rev. Anti Infect. Ther. 6, 453-462.
4 Haddad, J. J. and Land, S. C. (2002) Redox signaling-mediated regulation of lipopolysaccharide-induced proinflammatory cytokine biosynthesis in alveolar epithelial cells. Antioxid. Redox Signal. 4, 179-193.   DOI
5 Herbomel, P., Thisse, B. and Thisse, C. (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274-288.   DOI
6 Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K. and Salminen, A. (2013) Antagonistic crosstalk between NF-${\kappa}B$ and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal. 25, 1939-1948.   DOI
7 Ko, S. C. and Jeon, Y. J. (2015) Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model. Nutr. Res. Pract. 9, 219-226.   DOI
8 Larque, E., Sabater-Molina, M. and Zamora, S. (2007) Biological significance of dietary polyamines. Nutrition 23, 87-95.   DOI
9 Yang, L., Bu, L., Sun, W., Hu, L. and Zhang, S. (2014) Functional characterization of mannose-binding lectin in zebrafish: implication for a lectin-dependent complement system in early embryos. Dev. Comp. Immunol. 46, 314-322.   DOI
10 Yang, Q., Zheng, C., Cao, J., Cao, G., Shou, P., Lin, L., Velletri, T., Jiang, M., Chen, Q., Han, Y., Li, F., Wang, Y., Cao, W. and Shi, Y. (2016) Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ. 23, 1850-1861.   DOI
11 Matthy, M. A. and Zimmerman, G. A. (2005) Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am. J. Respir. Cell Mol. Biol. 33, 319-327.   DOI
12 Zhang, L. and Wang, C. C. (2014) Inflammatory response of macrophages in infection. HBPD INT. 13, 138-152.
13 Williams, M. R., Azcutia, V., Newton, G., Alcaide, P. and Luscinskas, F. W. (2011) Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol. 32, 461-469.   DOI
14 Le Guyader, D., Redd, M. J., Colucci-Guyon, E., Murayama, E., Kissa, K., Briolat, V., Mordelet, E., Zapata, A., Shinomiya, H. and Herbomel, P. (2008) Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111, 132-141.
15 Lee, H., Pyo, M. J., Bae, S. K., Heo, Y., Kim, C. G., Kang, C. and Kim, E. (2015) Improved therapeutic profiles of PLA2-free bee venom prepared by ultrafiltration method. Toxicol. Res. 31, 33-40.   DOI
16 Lee, I. C., Lee, S. M., Ko, J. W., Park, S. H., Shin, I. S., Moon, C., Kim, S. H. and Kim, J. C. (2016) Role of mitogen-activated protein kinases and nuclear factor-${\kappa}B$ in 1,3-dichloro-2-propanol-induced hepatic injury. Lab. Anim. Res. 32, 24-33.   DOI
17 Loser, C. (2000) Polyamines in human and animal milk. Br. J. Nutr. 84, S55-S58.
18 Lu, Y. C., Jayakumar, T., Duann, Y. F., Chou, Y. C., Hsieh, C. Y., Yu, S. Y., Sheu, J. R. and Hsiao, G. (2011) Chondroprotective role of sesamol by inhibiting MMPs expression via retaining NF-${\kappa}B$ signaling in activated SW1353 cells. J. Agric. Food Chem. 59, 4969-4978.   DOI
19 Mills, E. L. and O'Neill, L. A. (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13-21.   DOI
20 Merentie, M., Uimari, A,. Pietila, M., Sinervirta, R., Keinanen, T. A., Vepsalainen, J., Khomutov, A., Grigorenko, N., Herzig, K. H., Janne, J. and Alhonen, L. (2007) Oxidative stress and inflammation in the pathogenesis of activated polyamine catabolism-induced acute pancreatitis. Amino Acids 33, 323-330.   DOI
21 Minois, N. (2014) Molecular basis of the 'anti-aging' effect of spermidine and other natural polyamines - a mini-review. Gerontology 60, 319-326.   DOI
22 Moron, B., Spalinger, M., Kasper, S., Atrott, K., Frey-Wagner, I., Fried, M., McCole, D. F., Rogler, G. and Scharl, M. (2013) Activation of protein tyrosine phosphatase non-receptor type 2 by spermidine exerts anti-inflammatory effects in human THP-1 monocytes and in a mouse model of acute colitis. PLoS ONE 8, e73703.   DOI
23 Cheong, S. H., Yang, H. W., Ko, E. Y., Ahn, G., Lee, W., Kim, D., Jeon, Y. J. and Kim, K. N. (2016) Anti-inflammatory effects of trans-1,3-diphenyl-2,3-epoxypropane-1-one in zebrafish embryos in vivo model. Fish Shellfish Immunol. 50, 16-20.   DOI
24 Choi, Y. H. and Park, H. Y. (2012) Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J. Biomed. Sci. 19, 31.   DOI
25 Minois, N., Carmona-Gutierrez, D., Bauer, M. A., Rockenfeller, P., Eisenberg, T., Brandhorst, S., Sisgrist, S. J., Kroemer, G. and Madeo, F. (2012) Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways. Cell Death Dis. 3, e401.   DOI
26 Mitroulis, I., Alexaki, V. I., Kourtzelis, I., Ziogas, A., Hajishengallis, G. and Chavakis, T. (2015) Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol. Ther. 147, 123-135.   DOI
27 Moinard, C., Cynober, L. and de Bandt, J. P. (2005) Polyamines: metabolism and implications in human diseases. Clin. Nutr. 24, 184-197.   DOI
28 Nikaido, H. (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593-656.   DOI
29 Morselli, E., Marino, G., Bennetzen, M. V., Eisenberg, T., Megalou, E., Schroeder, S., Cabrera, S., Benit, P., Rustin, P., Criollo, A., Kepp, O., Galluzzi, L., Shen, S., Malik, S. A., Maiuri, M. C., Horio, Y., Lopez-Otin, C., Andersen, J. S., Tavernarakis, N., Madeo, F. and Kroemer, G. (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615-629.
30 Muralidharan, S. and Mandrekar, P. (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J. Leukoc. Biol. 94, 1167-1184.   DOI
31 Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787.   DOI
32 Conti, B., Tabarean, I., Andrei, C. and Bartfai, T. (2004) Cytokines and fever. Front. Biosci. 9, 1433-1449.   DOI
33 Cunha, T. M., Verri, W. A. Jr., Schivo, I. R., Napimoga, M. H., Parada, C. A., Poole, S., Teixeira, M. M., Ferreira, S. H. and Cunha, F. Q. (2008) Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J. Leukoc. Biol. 83, 824-832.   DOI
34 Czura, C. J., Friedman, S. G. and Tracey, K. J. (2003) Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. J. Endotoxin Res. 9, 409-413.   DOI
35 Dibbert, B., Weber, M., Nikolaizik, W. H., Vogt, P., Schoni, M. H., Blaser, K. and Simon, H. U. (1999) Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. Proc. Natl. Acad. Sci. U.S.A. 96, 13330-13335.   DOI
36 Eisenberg, T., Knauer, H., Schauer, A., Bottner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., Fussi, H., Deszcz, L., Hartl, R., Schraml, E., Criollo, A., Megalou, E., Weiskopf, D., Laun, P., Heeren, G., Breitenbach, M., Grubeck-Loebenstein, B., Herker, E., Fahrenkrog, B., Frohlich, K. U., Sinner, F., Tavernarakis, N., Minois, N., Kroemer, G. and Madeo, F. (2009) Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305-1314.   DOI
37 Amin, A. R., Attur, M. and Abramson, S. B. (1999) Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr. Opin. Rheumatol. 11, 202-209.   DOI
38 Brune, B., Dehne, N., Grossmann, N., Jung, M., Namgaladze, D., Schmid, T., von Knethen, A. and Weigert, A. (2013) Redox control of inflammation in macrophages. Antioxid. Redox Signal. 19, 595-637.   DOI
39 Paul, S. and Kang, S. C. (2013) Natural polyamine inhibits mouse skin inflammation and macrophage activation. Inflamm. Res. 62, 681-688.   DOI
40 Nirwane, A., Sridhar, V. and Majumdar, A. (2016) Neurobehavioural changes and brain oxidative stress induced by acute exposure to GSM900 mobile phone radiations in zebrafish (Danio rerio). Toxicol. Res. 32, 123-132.   DOI
41 Rigoglou, S. and Papavassiliou, A. G. (2013) The NF-${\kappa}B$ signalling pathway in osteoarthritis. Int. J. Biochem. Cell Biol. 45, 2580-2584.   DOI
42 Sava, I. G., Battaglia, V., Rossi, C. A., Salvi, M. and Toninello, A. (2006) Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic. Biol. Med. 41, 1272-1281.   DOI
43 Wang, L., Xu, M. L., Liu, J., Wang, Y., Hu, J. H. and Wang, M. H. (2015) Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages. Nutr. Res. Pract. 9, 579-585.   DOI
44 Sikora, J. P. (2002) Immunotherapy in the management of sepsis. Arch. Immunol. Ther. Exp. (Warsz.) 50, 317-324.
45 Tan, H. Y., Wang, N., Li, S., Hong, M., Wang, X. and Feng, Y. (2016) The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell. Longeva. 2016, 2795090.
46 Varga, A., Budai, M. M., Milesz, S., Bacsi, A., Tozser, J. and Benko, S. (2013) Ragweed pollen extract intensifies lipopolysaccharideinduced priming of NLRP3 inflammasome in human macrophages. Immunology 138, 392-401.   DOI
47 Wijesinghe, W. A., Kim, E. A., Kang, M. C., Lee, W. W., Lee, H. S., Vairappan, C. S. and Jeon, Y. J. (2014) Assessment of anti-inflammatory effect of $5{\beta}$-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model. Environ. Toxicol. Pharmacol. 37, 110-117.