Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.11.999

Anti-neuroinflammatory Effect of Teleogryllus emma Derived Teleogryllusine in LPS-stimulated BV-2 Microglia  

Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Shin, Yong Pyo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Hwa Jeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Baek, Minhee (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Journal of Life Science / v.30, no.11, 2020 , pp. 999-1006 More about this Journal
Abstract
The suppression of neuroinflammatory responses in microglial cells, well known as the main immune cells in the central nervous system (CNS), are considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Teleogryllus emma is widely consumed around the world for its broad-spectrum therapeutic effect. In a previous work, we performed transcriptome analysis on T. emma in order to obtain the diversity and activity of its antimicrobial peptides (AMPs). AMPs are found in a variety of species, from microorganisms to mammals. They have received much attention as candidates oftherapeutic drugs for the treatment of inflammation-associated diseases. In this study, we investigated the anti-neuroinflammatory effect of Teleogryllusine (VKWKRLNNNKVLQKIYFVKI-NH2) derived from T. emma on lipopolysaccharide (LPS) induced BV-2 microglia cells. Teleogryllusine significantly inhibited nitric oxide (NO) production without cytotoxicity, and reducing pro-inflammatory enzymes expression such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, Telegryllusine also inhibited the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) through down-regulation of the mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathway. These results suggest that T. emma-derived Teleogryllusine could be a good source of functional substances that prevent neuroinflammation and neurodegenerative diseases.
Keywords
Antimicrobial peptide; inflammatory cytokine; microglia; neuroinflammation; nitric oxide; Teleogryllus emma;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Gonzalez, H., Elgueta, D., Montoya, A. and Pacheco, R. 2014. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J. Neuroimmunol. 274, 1-13.   DOI
2 Gonzalez-Scarano, F. and Baltuch, G. 1999. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219-240.   DOI
3 Gordon, Y. J., Romanowski, E. G. and McDermott, A. M. 2005. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 30, 505-515.   DOI
4 Griffin, W. S. 2006. Inflammation and neurodegenerative diseases. Am. J. Clin. Nutr. 83, 470S-474S.   DOI
5 Gulati, P. and Singh, N. 2014. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J. Pharm. Bioallied Sci. 6, 233-240.   DOI
6 Hink, U. and Munzel, T. 2006. COX-2, another important player in the nitric oxide-endothelin cross-talk: good news for COX-2 inhibitors? Circ. Res. 98, 1344-1346.   DOI
7 Hollmann, A., Martinez, M., Maturana, P., Semorile, L. C. and Maffia, P. C. 2018. Antimicrobial Peptides: Interaction model and biological membranes and synergism with chemical antibiotics. Front. Chem. 6, 204.   DOI
8 Hunot, S., Boissiere, F., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y. and Hirsch, E. C. 1996. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72, 355-363.   DOI
9 Jiang, Z., Li, C., Arrick, D. M., Yang, S., Baluna, A. E. and Sun, H. 2014. Role of nitric oxide synthases in early blood-brain barrier disruption fol-lowing transient focal cerebral ischemia. PLos One 9, e93134.   DOI
10 Jin, R., Yang, G. and Li, G. 2010. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol. 87, 779-789.   DOI
11 Schmid, C. D., Sautkulis, L. N., Danielson, P. E., Cooper, J., Hasel, K. W., Hilbush, B. S., Sutcliffe, J. G. and Carson, M. J. 2002. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J. Neurochem. 83, 1309-1320.   DOI
12 Park, J. H., Kim, S. H. and Lee, S. R. 2017. Inhibitory effect of Petalonia binghamiae on neuroinflammation in LPSstimulated microglial cells. J. Nutr. Health 50, 25-31.   DOI
13 Pruett, S. B., Fan, R. and Zheng, Q. 2003. Characterization of glucocorticoid receptor translocation, cytoplasmic IkappaB, nuclear NFkappaB, and activation of NFkappaB in T lymphocytes exposed to stress-inducible concentrations of corticosterone in vivo. Int. Immunopharmacol. 3, 1-16.   DOI
14 Robertson, M. and Postlethwait, J. H. 1986. The humoral antibacterial response of Drosophila adults. Dev. Comp. Immunol. 10, 167-179.   DOI
15 Lee, J. H., Kim, I. W., Kim, M. A., Ahn, M. Y., Yun, E. Y. and Hwang, J. S. 2017. Antimicrobial activity of the scolopendrasin V peptide identified from the centipede Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 27, 43-48.   DOI
16 Kim, I. W., Lee, J. H., Seo, M., Lee, H. J., Baek, M., Kim, M. A., Shin, Y. P., Kim, S. H., Kim, I. and Hwang, J. S. 2020. Anti-inflammatory activity of antimicrobial peptide periplanetasin-5 derived from the cockroach Periplaneta americana. J. Microbiol. Biotechnol. 30, 1282-1289.   DOI
17 Knott, C., Stern, G. and Wilkin, G. P. 2000. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci. 16, 724-739.   DOI
18 Kwon, Y. N., Lee, J. H., Kim, I. W., Kim, S. H., Yun, E. Y., Nam, S. H., Ahn, M. Y., Jeong, M., Kang, D. C., Lee, I. H. and Hwang, J. S. 2013. Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 23, 1381-1385.   DOI
19 Lee, A. H., Kim, J. E., Choi, J. Y., Sung, J. E., Youn, W. B., Son, H. J., Lee, H. S., Kang, H. G. and Hwang, D. Y. 2020. Inhibitory effects of Asparagus cochinchinensis in LPSstimulated BV-2 microglial cells through regulation of neuroinflammatory mediators, the MAP kinase pathway, and the cell cycle. J. Life Sci. 30, 331-342.   DOI
20 Lee, J. H., Seo, M., Lee, H. J., Baek, M., Kim, I. W., Kim, S. Y., Kim, M. A., Kim, S. H. and Hwang, J. S. 2019. Anti-inflammatory activity of antimicrobial peptide allomyrinasin derived from the dynastid beetle, Allomyrina dichotoma. J. Microbiol. Biotechnol. 29, 687-695.   DOI
21 Liden, J., Rafter, I., Truss, M., Gustafsson, J. A. and Okret, S. 2000. Glucocorticoid effects on NF-kappaB binding in the transcription of the ICAM-1 gene. Biochem. Bioph. Res. Co. 273, 1008-1014.   DOI
22 Nakagawa, Y. and Chiba, K. 2014. Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel) 7, 1028-1048.   DOI
23 Seo, M., Lee, J. H., Baek, M. H., Kim, M. A., Ahn, M. Y., Kim, S. H., Yun, E. Y. and Hwang, J. S. 2017. A novel role for earthworm peptide Lumbricusin as a regelator of neurinfammation. Biochem. Biophys. Res. Commun. 490, 1004-1010.   DOI
24 Steinstraesser, L., Kraneburg, U. M., Hirsch, T., Kesting, M., Steinau, H. U., Jacobsen, F. and Al-Benna, S. 2009. Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance? Int. J. Mol. Sci. 10, 3951-3970.   DOI
25 Teismann, P., Vila, M., Choi, D. K., Tieu, K., Wu, D. C., Jackson-Lewis, V. and Przedborski, S. 2003. COX-2 and neurodegeneration in Parkinson's disease. Ann. NY. Acad. Sci. 991, 272-277.
26 Wang, J. Y., Lee, C. T. and Wang, J. Y. 2014. Nitric oxide plays a dual role in the oxidative injury of cultured rat microglia but not astroglia. Neuro. Sci. 281, 164-177.
27 Yaakobi, K., Liebes-Peer, Y., Kushmaro, A. and Rapaport, H. 2013. Designed amphiphilic β-sheet peptides as templates for paraoxon adsorption and detection. Langmuir 29, 6840-6848.   DOI
28 Marina, L., Kamal, R. M., Andrew, F., Gary, B., Jeremy, S. and Andrew, R. C. 2000. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol. Cell. Biol. 20, 4265-4278.   DOI
29 Melchior, B., Puntambekar, S. S. and Carson, M. J. 2006. Microglia and the control of autoreactive T cell responses. Neurochem. Int. 49, 145-153.   DOI
30 Nakajima, K., Honda, S., Tohyama, Y., Imai, Y., Kohsaka, S. and Kurihara, T. 2001. Neurotrophin secretion from cultured microglia. J. Neurosci. Res. 65, 322-331.   DOI
31 Okamoto, S. and Lipton, S. A. 2015. S-Nitrosylation in neurogenesis and neuronal development. Biochim. Biophys. Acta. 1850, 1588-1593.   DOI
32 Chung, Y. C., Ko, H. W., Bok, E., Park, E. S., Huh, S. H., Nam, J. H. and Jin, B. K. 2010. The role of neuroinflammation on the pathogenesis of Parkinson's disease. BMB Rep. 43, 225-232.   DOI
33 Andreasson, K. I., Bachstetter, A. D., Colonna, M., Ginhoux, F., Holmes, C., Lamb, B., Landreth, G., Lee, D. C., Low, D., Lynch, M. A., Monsonego, A., O'Banion, M. K., Pekny, M., Puschmann, T., Russek-Blum, N., Sandusky, L. A., Selenica, M. L., Takata, K., Teeling, J., Town, T. and Van Eldik, L. J. 2016. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J. Neurochem. 138, 653-693.   DOI
34 Boman, H. G., Nilsson-Faye, I., Paul, K. and Rasmuson, Jr. T. 1974. Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect. Immun. 10, 136-145.   DOI
35 Chao, D., Bahl, P., Houlbrook, S., Hoy, L., Harris, A. and Austyn, J. M. 1999. Human cultured dendritic cells show differential sensitivity to chemotherapy agents as assessed by the MTS assay. Br. J. Cancer 81, 1280-1284.   DOI
36 Freudenthal, O., Quilès, F. and Francius, G. 2017. Discrepancies between cyclic and linear antimicrobial peptide actions on the spectrochemical and nanomechanical fingerprints of a toung biofilm. ACS Omega 2, 5861-5872.   DOI
37 Delgado, A. V., McManus, A. T. and Chambers, J. P. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte sub-populations after exposure to substance. Neuropeptide 37, 355-361.   DOI
38 Deque, G., A. and Descoteaux, A. 2014. Macrophage Cytokine: Involvement in immunity and infectious diseases. Front. Immunol. 5, 491.
39 Hultmark, D., Steiner, H., Rasmuson, T. and Boman, H. G. 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7-16.   DOI