• Title/Summary/Keyword: Nozzle Position

Search Result 212, Processing Time 0.022 seconds

Numerical Analysis of Secondary Injection for Thrust Vector Control on 2-Dimensional Supersonic Nozzle (2차원 초음속 노즐에서의 2차 유동분사에 의한 추력 방향 제어 특성의 수치적 해석)

  • 오대환;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 2000
  • The advantages of the SITVC (Secondary Injection for Thrust Vector Control) technique over mechanical thrust vectoring systems include a reduction in both the nozzle weight and complexity due to the elimination of the mechanical actuators that are used in conventional vectoring. The optimal operating conditions of SITVC were investigated using in-house developed compressible flow analysis codes. Numerical experiments were used to examine the impact of the thrust vector direction with a variety of injection positions, mass flow rates, and injection angles on the two-dimensional expansion cone of a supersonic nozzle. The computational results showed that the optimal position of the secondary injection, with the maximum deviation angle and side thrust, was where the oblique shock generated by the secondary injection reached the end of the nozzle exit.

  • PDF

An Analysis of Flashing Jet Behavior of Pressurized Water (물제트의 노즐 입구온도변화에 따른 증발특성 해석)

  • KIM, BOOSANG;KIM, HAKDEOK;LIM, HEECHANG;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.585-592
    • /
    • 2019
  • In this study, a flashing boiling phenomenon of pressurized water jet was numerically studied and validated against an experimental data in the literatures. The volume of fluid (VOF) technique was used to consider two-phase behavior of water, while the homogeneous relaxation model (HRM) model was used to provide the velocity of phase change. During the flashing boiling through a nozzle, a mach disk was observed near nozzle exit because of pressure drop resulting from two-phase under-expansion. The flashing jet structure, local distributions of temperature/vapor volume fraction/velocity, and position of the mach disk were examined as nozzle inlet temperature changed.

Development of gamma ray scanning coupled with computed tomographic technique to inspect a broken pipe structure inside laboratory scale vessel

  • Saengchantr, Dhanaj;Srisatit, Somyot;Chankow, Nares
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.800-806
    • /
    • 2019
  • This paper presents a laboratory experiment on data acquisition technique that applied to the gamma radiation scanning coupled with computed tomography (CT) technique for inspection of broken nozzle inside the vertical vessel. The acquisition technique was developed to inspect a large diameter vessel when suspicious problem location is not easily accessed. This technique allows the installation of gamma radiation source (Cesium 137, Cs-137), and detectors (Sodium Iodine. NaI(Tl)) from the accessible location to the required location and performs the scanning by designed pattern. To demonstrate the designed technique, top opened tank which installed with six cut steel pipes diameter of 76.2 mm (3") at a certain position was selected. They were assumed to be a gas riser pipes inside the vessel. Three studied cases were performed, (a) projection of well installed six pipes, (b) projection of one out of six broken pipe and (c) one of nozzle was assumed to be failure and fell down until one out of six pipes was broken and obstructed by nozzle. Results clearly indicated the capability of developed technique to distinguish between normal situation case and abnormal situation cases.

Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle (이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

Analysis of Flow and Infrared Signature Characteristics according to UCAV Nozzle Shape (무인전투기 배기구 형상에 따른 유동 및 적외선 신호 특성 분석)

  • Noh, Sooyoung;Bae, Ji-Yeul;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • Stealth technology is a technique to avoid detection from detectors such as radar and infrared seekers. In particular, detection by infrared signature is more threatening because infrared missiles detect heat from the aircraft itself. Therefore, infrared stealth technology is essential for ensuring the survival of aircraft and unmanned combat aerial vehicles (UCAV). In this study, we analyzed aerodynamic and infrared stealth performance in relation to UCAV nozzle design. Based on simulation results, a double serpentine nozzle was effective in reducing the infrared signature because it could shield high-temperature components in the engine. In addition, we observed that the infrared signature was reduced at the turning position of the duct located at the rear part of the double serpentine nozzle.

Characteristics of Flow Field and IR of Double Serpentine Nozzle Plume for Varying Cross Sectional Areas and Flight Conditions in UCAV (Double Serpentine 노즐의 단면적과 비행조건 변화에 따른 UCAV의 플룸 유동장 및 IR 특성 연구)

  • Lee, Yu-Ryeol;Lee, Ji-Won;Shin, Chang-Min;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.689-698
    • /
    • 2021
  • The development of modern warfare detection technology is increasingly threatening the survivability of aircraft. Among them, IR-seeking missiles greatly affect the survivability of aircraft and are a main factor that reduces the success rate of aircraft missions. In order to increase aircraft survivability, studies on shape-modifying nozzles with added curvature are being actively conducted. In this study, we selected a double serpentine nozzle among shape-modifying nozzles to increase aircraft survivability. We then investigated the effects of the location of the maximum area change rate of the nozzle. It was confirmed that the location of the change rate of area affects the thrust and exit temperature of the nozzle. In addition, it was shown that the thrust penalty was reduced as the position of the change rate of the maximum area was located at the rear of the nozzle.

Characteristics of NOx Reduction and NH3 Slip in SNCR Using Pipe Nozzle for the Application of Hybrid SNCR/SCR Process (Hybrid SNCR/SCR 탈질공정에서 SNCR의 관통노즐에 의한 NOx 저감 및 NH3 Slip 특성)

  • Hyun, Ju Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.111-118
    • /
    • 2009
  • A hybrid SNCR/SCR plant was designed and manufactured, and experimented on the SNCR process in the first step to investigate the optimum operation conditions of SNCR, with the equivalence ratio of the reducing agent(NSR, 0.5~5.0), reaction temperature($850{\sim}1,100^{\circ}C$), nozzle type(wall nozzle, pipe nozzle), and nozzle position as variables. In the case of wall nozzles, the NOx reduction efficiency rapidly increased to 87% at 2.5 NSR and slowed down after this. Compared to the upward spray from the pipe nozzle, wall nozzles have narrower range of applicable reaction temperature. In the case of pipe nozzles, it rapidly increased to 77% at 1.5 NSR. But the pipe nozzle downward had no NOx reduction efficiency; on the contrary, NOx increased. When the reducing agent was sprayed upward from a pipe nozzle, the NOx reduction efficiency was 50~75% in the range of 0.5~1.5 NSR, and the NOx reduction efficiency was constant without fluctuations even in the change of reaction temperature from 890 to $1,000^{\circ}C$. When 5% urea solution was sprayed upward from the pipe nozzle, 200 ppm NOx decreased to approximately 60 ppm at 1.2 NSR, and the non-reacted $NH_3$ was 50~100 ppm. In this condition, we expect over 90% NOx reduction efficiency without additional supply of $NH_3$ to SCR at the back of SNCR.

Development of Autonomous Surface Robot for Marine Fire Safety (해양 소방 안전을 위한 자율수상로봇 개발)

  • Jeong, Jinseok;Sa, Youngmin;Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.138-142
    • /
    • 2018
  • The marine industry is rapidly developing as a result of the increase in various needs in the marine environment. In addition, accidents involving ship fires and explosions and the resulting casualties are increasing. Generally, manpower and safety problems exist in fire fighting. A fire fighter in the form of an autonomous surface robot would be ideal for marine fire safety, because it has no manpower and safety problems. Therefore, an autonomous surface robot with the abilities of fire recognition and tracking, nozzle selection, position and attitude control, and fire fighting was developed and is discussed in this paper. The test and evaluation results of this robot showed the possibility of real-size applications and the need for additional studies.

Droplet Sizes and Velocities from Single-Hole Nozzle in Transversing Subsonic Air-stream (아음속 횡단류에 수직 분사되는 분무의 액적크기 및 속도 분포 특성)

  • Lee, In-Chul;Cho, Woo-Jin;Lee, Bong-Su;Kim, Jong-Hyun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.106-109
    • /
    • 2007
  • The spray plume characteristics of liquid water jet injected into subsonic cross-flow at 42 m/s were experimentally investigated. Nozzle has a 1.0 m diameter and L/D=5. Droplet sizes, velocities, volume flux were measured at each downstream area of the injector exit using phase Doppler particle anemometry. Measuring probe position is moved with 3-way transversing machine. Experimental results indicate that SMD is varied from 75 to $120{\mu}m$ distribution and it is uncertain layer structure. SMD peaks at the top of the spray plume. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/D : 40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume. Volume flux is a criterion to the droplet concentration. All volume flux distribution has a same structure that continuously decreases from the center region to the edge of the plume. Z/D : 20 is spatially less concentrated than in Z/D : 100.

  • PDF

Selection of Heater Location in Linear Source for OLED Vapor Deposition (OLED 증착을 위한 선형증발원 히터 위치선정)

  • Joo, Young-Cheol;Han, Choong-Hwan;Um, Tai-Joon;Lee, Sang-Wook;Kim, Kug-Weon;Kwon, Kye-Si
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.515-518
    • /
    • 2008
  • Organic light emitting diode(OLED) is one of the most promising type of future flat panel display. A linear source is used to deposite organic vapor to a large size OLED substrate. An electric heater which is attached on the side of linear source heats the organic powder for the sublimation. The nozzle of heater, which is attached at the top of the linear source has an optimal temperature. An numerical analysis has been performed to find optimal heater position for the optimal nozzle temperature. A commercial CFD program, FLUENT, is used on the analysis. Two-dimensional and three-dimensional analysis have been performed. The analysis showed that the heater should be attached at the outer side of crucible wall rather than inner side of housing, which was original design. Eighteen milimeter from the top of the linear source was suggested as the optimal position of heater. Improving thermal performance of linear source not only helps the uniformity of organic vapor deposition on the substrate but also increase productibity of vapor deposition process.