DOI QR코드

DOI QR Code

무인전투기 배기구 형상에 따른 유동 및 적외선 신호 특성 분석

Analysis of Flow and Infrared Signature Characteristics according to UCAV Nozzle Shape

  • Noh, Sooyoung (Department of Mechanical Engineering, Yonsei University) ;
  • Bae, Ji-Yeul (Department of Mechanical Engineering, Yonsei University) ;
  • Kim, Jihyuk (Department of Mechanical Engineering, Yonsei University) ;
  • Nam, Juyeong (Department of Mechanical Engineering, Yonsei University) ;
  • Jo, Hana (Agency for Defense Development) ;
  • Cho, Hyung Hee (Department of Mechanical Engineering, Yonsei University)
  • 투고 : 2018.11.16
  • 심사 : 2019.08.07
  • 발행 : 2019.10.01

초록

스텔스 기술은 레이더 및 적외선 시커와 같은 탐지기로부터의 탐지를 피하는 기술이다. 특히 IR 미사일은 항공기 자체의 열을 감지하기 때문에 적외선 신호에 의한 탐지는 더욱 위협적이며 적외선 스텔스 기술은 항공기 및 UCAV(Unmanned Combat Aerial Vehicle)의 생존을 보장하는데 필수적이다. 본 연구에서는 UCAV 노즐 설계에 따른 공력 및 적외선 스텔스 성능 분석이 수행되었다. 수치해석 결과에 따르면 Double S형 노즐은 엔진의 고온부를 차폐할 수 있기 때문에 적외선 신호를 줄이는 데 효과적이다. 또한, Double S형 노즐에서 회전부 위치가 뒤쪽에 위치할수록 적외선 신호가 감소함을 확인하였다.

Stealth technology is a technique to avoid detection from detectors such as radar and infrared seekers. In particular, detection by infrared signature is more threatening because infrared missiles detect heat from the aircraft itself. Therefore, infrared stealth technology is essential for ensuring the survival of aircraft and unmanned combat aerial vehicles (UCAV). In this study, we analyzed aerodynamic and infrared stealth performance in relation to UCAV nozzle design. Based on simulation results, a double serpentine nozzle was effective in reducing the infrared signature because it could shield high-temperature components in the engine. In addition, we observed that the infrared signature was reduced at the turning position of the duct located at the rear part of the double serpentine nozzle.

키워드

참고문헌

  1. An, C.H., Kang, D.W., Baek, S.T., Myong, R.S., Kim, W.C., and Choi, S.M., “Analysis of Plume Infrared Signatures of S-Shaped Nozzle Configurations of Aerial Vehicle,” Journal of Aircraft, Vol. 53, No. 6, pp. 1768-1778, 2016. https://doi.org/10.2514/1.C033685
  2. Rao, G.A. and Mahulikar, S.P., “New Criterion for Aircraft Susceptibility to Infrared Guided Missiles,” Aerospace Science and Technology, Vol. 9, No. 8, pp. 701-712, 2005. https://doi.org/10.1016/j.ast.2005.07.005
  3. Miller, E.H., Protopapas, J., Obye, R., and Wooten, W., "Nozzle Design and Integration in an Advanced Supersonic Fighter," Aircraft Systems and Technology Meeting, New York, U.S.A., p. 1813, Aug. 1979.
  4. Mahulikar, S.P., Sonawane, H.R., and Rao, G.A., “Infrared Signature Studies of Aerospace Vehicles,” Progress in Aerospace Science, Vol. 43, No. 7, pp. 218-245, 2007. https://doi.org/10.1016/j.paerosci.2007.06.002
  5. Spang III, H.A. and Brown, H., "Control of jet engines," Control Engineering Practice, Vol. 79, Issue. 9, pp. 1043-1059, 1999. https://doi.org/10.1016/S0967-0661(99)00078-7
  6. Sun, X.L., Wang, Z.X., Zhou, L., Liu, Z.W., and Shi, J.W., “Influences of Design Parameters on a Double Serpentine Convergent Nozzle,” Journal of Engineering for Gas Turbines and Power, Vol. 138, No. 7, pp. 072301, 2016. https://doi.org/10.1115/1.4032338
  7. Jaiswal, G. K., Rao, N., Kushari, A., "IR Signature Studies of Serpentine Nozzle," 7th International conference on theoretical, Applied, Computational and Experimental Mechanics, IIT Kharagpur, India, p. 158, Dec. 2017.
  8. "nEUROn," retrieved 15 Dec. 2018 from http://dassault-aviation.com.
  9. Cheng, W., Wang, Z., Zhou, L., Sun, X., and Shi, J., "Influences of Serpentine Ratio on the Infrared Signature of Serpentine Nozzle," Aerospace Science and Technology, Vol. 71, pp. 299-311, 2017. https://doi.org/10.1016/j.ast.2017.09.001
  10. Kim, T., Lee, H., Bae, J.Y., Kim, T., Cha, J., Jung, D., and Cho, H.H., "Susceptibility of Combat Aircraft Modeled as an Anisotropic Source of Infrared Radiation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 5, pp. 2467-2476, 2010. https://doi.org/10.1109/TAES.2016.150513
  11. Sun, X.L., Wang, Z.X., Zhou, L., Shi, J.W., and Liu, Z.W., "Experimental and Computational Investigation of Double Serpentine Nozzle," Journal of Aerospace Engineering, Vol. 229, Issue 11, pp. 2035-2050, 2014.
  12. Daniel E.E. and Erik, A.L., "Exhaust Nozzle Cooling Scheme for Gas Turbine Engine," U.S. Patent No. 5,577,381. 26, Nov. 1996.
  13. GasTurb 12, "GasTurb 12: Design and Off-Design Performance of Gas Turbines," GasTurb GmbH, Aachen, Germany, 2015.
  14. ANSYS Fluent V17.2, "ANSYS Fluent Theory Guide 17.2," ANSYS, Inc., Canonsburg, P.A., U.S.A., 2015.
  15. RadthermIR 10.4, "RadthermIR User Manual Version: 10.4.0," ThermoAnalyics, Inc., Calumet City, U.S.A., 2012.