Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.6.585

An Analysis of Flashing Jet Behavior of Pressurized Water  

KIM, BOOSANG (School of Mechanical Engineering, Pusan National University)
KIM, HAKDEOK (School of Mechanical Engineering, Pusan National University)
LIM, HEECHANG (School of Mechanical Engineering, Pusan National University)
SONG, JUHUN (School of Mechanical Engineering, Pusan National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.6, 2019 , pp. 585-592 More about this Journal
Abstract
In this study, a flashing boiling phenomenon of pressurized water jet was numerically studied and validated against an experimental data in the literatures. The volume of fluid (VOF) technique was used to consider two-phase behavior of water, while the homogeneous relaxation model (HRM) model was used to provide the velocity of phase change. During the flashing boiling through a nozzle, a mach disk was observed near nozzle exit because of pressure drop resulting from two-phase under-expansion. The flashing jet structure, local distributions of temperature/vapor volume fraction/velocity, and position of the mach disk were examined as nozzle inlet temperature changed.
Keywords
Flash boiling; Pressurized water; Homogeneous relaxation model(HRM); Multiphase flow; Mach disk; Nozzle inlet temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Toesse, K. Vaagsaether, J. Lundberg, A. V. Gaathaug, D. Bjerketvedt, S. Nilsen, and C. K. Jayarathna, "Experimental study of $CO_2$ releases from a saturated liquid reservoir", Energy Procedia, Vol. 37, 2013, pp. 4818-4824, doi: https://doi.org/10.1016/j.egypro.2013.06.391.   DOI
2 R. D. Reitz, "A photographic study of flash-boiling atomization", Aerosol Sci. Technol., Vol. 12, No. 3, 1990, pp. 561-565, doi: https://doi.org/10.1080/02786829008959370.   DOI
3 B. S. Park and S. Y. Lee, "An experimental investigation of the flash atomization mechanism", Atomization and Sprays, Vol. 4, 1994, pp. 159-179, doi: https://doi.org/10.1615/AtomizSpr.v4.i2.30.   DOI
4 M. Rossmeissl, K. E. Wirth, "Critical mass-flow in orificenozzles at the disintegration of superheated liquids", in: Spray 2006 Workshop uber Sprays, Erfassung von Sprühvorgangen und Techniken der Fluidzerstaubungy, 2008, pp. 1381-1388, doi: https://doi.org/10.1115/FEDSM2006-98043.
5 S. Gopalakrishnan, "Modeling of thermal non-Equilibrium in superheated injector flows", Ph.D Thesis, University of Massachusetts Amherst, 2010. Retrieved from https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1183&context=open_access_dissertations.
6 R. Q. Duan, S. Koshizuka, S. Y. Jiang, Y. Oka, A. Yamaguchi, and T. Takata, "Numerical analyses of flashing jet structure and droplet size characteristics", Journal of Nuclear Science and Technology, Vol. 43, No. 3, 2006, pp. 285-294. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/18811248.2006.9711091.   DOI
7 S. Negro and P. Pelloni, "The prediction of flash evaporation in superheated fuel injections for automotive applications", Presented at University of Bologna, Available Online. Retrieved from https://s3.amazonaws.com/academia.edu.documents/54862114/neshunam.PDF?response-contentdisposition=inline%3B%20filename%3DThe_Prediction_of_Flash_Evaporation_in_T.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191230%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191230T002706Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=83e509f125db1369072dffa6efa705217c21f0bc35760cd8f6a03c1af5412d57.
8 L. Engelmeier, S. Pollak, E. Weidner, "Investigation of superheated liquid carbon dioxide jets for cutting applications", The Journal of Supercritical Fluids, Vol. 132, 2018, pp. 33-41, doi: https://doi.org/10.1016/j.supflu.2017.01.008.   DOI
9 T. C. Lin, Y. J. Shen, and M. R. Wang, "Effects of superheat on characteristics of flashing spray and snow particles produced by expanding liquid carbon dioxide", Journal of Aerosol Science, Vol. 61, 2013, pp. 27-35, doi: https://doi.org/10.1016/j.jaerosci.2013.03.005.   DOI
10 M. Pursell, "Experimental investigation of high pressure liquid $CO_2$ release behaviour", Hazards XXIII, Symposium series No. 158, 2012, pp. 164-171. Retrieved from https://www.icheme.org/media/9029/xxiii-paper-22.pdf.
11 J. Smolka, Z. Bulinski, A. Fic, A. J. Nowak, K. Banasiak, and A. Hafner, "A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach", Applied Mathematical Modelling, Vol. 37, No. 3, 2013, pp. 1208-1224, doi: https://doi.org/10.1016/j.apm.2012.03.044.   DOI
12 H. Zhao, S. Quan, M. Dai, E. Pomraning, P. K. Senecal, Q. Xue, M. Battistoni, and S. Som,"Validation of a threedimensional internal nozzle flow model including automatic mesh generation and cavitation effects", J. Eng. Gas Turbines Power., Vol. 136, No. 9, 2014, pp. 092603, doi: https://doi.org/10.1115/1.4027193.   DOI
13 P. Downar-Zapolski, Z. Bilicki,, L. Bolle, and J. Franco, "The non-equilibrium relaxation model for one-dimensional f lashing liquid flow", International Journal of Multiphase Flow, Vol. 22, No. 3, 1996, pp. 473-483, doi: https://doi.org/10.1016/0301-9322(95)00078-X.   DOI
14 J. R. Simoes-Moreira, M. M. Vieira, and E. Angelo, "Highly expanded flashing liquid jets", Journal of Thermophysics and Heat Transfer, Vol. 16, No. 3. 2002, pp. 415-424, doi: https://doi.org/10.2514/2.6695.   DOI
15 Y. Fang, M. D. Lorenzo, P. Lafon, S. Poncet, and Y. Bartosiewicz, "An accurate and efficient look-up table equation of state for two-phase compressible flow simulations of carbon dioxide", Ind. Eng. Chem. Res., Vol. 57, No. 22, 2018, pp. 7676-7691, doi: https://doi.org/10.1021/acs.iecr.8b00507.   DOI
16 M. D. Lorenzo, P. Lafon, M. D. Matteo, M. Pelantia, J. M. Seynhaevec, and Y. Bartosiewicz, " Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations", International Journal of Multiphase Flow, Vol. 95, 2017, pp. 199-219, doi: https://doi.org/10.1016/j.ijmultiphaseflow.2017.06.001.   DOI