• Title/Summary/Keyword: Nonlinearity error

Search Result 215, Processing Time 0.024 seconds

Nonlinearity Compensation in the Secondary Path of Active Noise Control Systems Using An Inverse Adaptive Volterra Filtering (역 적응 볼테라 필터링을 이용한 능동 소음 제어 시스템의 2차 경로 비선형 특성 적응 보상)

  • Jeong I.S.;Lee I.H.;Nam S.W.
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.827-833
    • /
    • 2004
  • In active noise control (ANC) systems, the error-reduction performance of the conventional Filtered-X Least Mean Square (FXLMS) algorithm may be affected by nonlinear distortions in the secondary path such as in the power amplifiers, loudspeakers and transducers. In this paper, a nonlinear FXLMS algorithm with high error-reduction performance is proposed to compensate for undesirable nonlinearities in the secondary-path of ANC systems by employing the inverse Volterra filtering approach. In particular, the proposed approach is based on the utilization of the conventional P-th order inverse approach to nonlinearity compensation in the secondary path of ANC systems. Finally, the simulation results showed that the proposed approach yields a better nonlinearity compensation performance for the ANC systems with a nonlinear secondary path than the conventional FXLMS.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

Adaptive Error Compensation of Heterodyne Laser Interferometer using DFNN (DFNN을 이용한 헤테로다인 레이저 간섭계의 적응형 오차 보정)

  • Heo, Gun-Haeng;Lee, Woo-Ram;You, Kwan-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1042-1047
    • /
    • 2008
  • As an ultra-precision measurement system the heterodyne laser interferometer plays an important role in semiconductor industry. However the errors of environment and nonlinearity which are caused by air refraction and frequency-mixing separately reduce the accuracy of displacement measurement. In this paper we propose a DFNN(data fusion and neural network) method for error compensation. As a hybrid method of data fusion and neural network, DFNN method reduces the environmental and nonlinear error simultaneously. The effectiveness of the proposed error compensation method is proved through experimental results.

An Architecture Design of a Multi-Stage 12-bit High-Speed Pipelined A/D Converter (다단 12-비트 고속 파이프라인 A/D 변환기의 구조 설계)

  • 임신일;이승훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.220-228
    • /
    • 1995
  • An optimized 4-stage 12-bit pipelined CMOS analog-to-digital converter (ADC) architecture is proposed to obtain high linearity and high yield. The ADC based on a multiplying digital-to-analog converter (MDAC) selectively employs a binary-weighted-capacitor (BWC) array in the front-end stage and a unit-capacitor (UC) array in the back-end stages to improve integral nonlinearity (INL) and differential nonlinearity (DNL) simultaneously whil maintaining high yield. A digital-domain nonlinear error calibration technique is applied in the first stage of the ADC to improve its accuracy to 12-bit level. The largest DNL error in the mid-point code of the ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is simulated to prove the effectiveness of the proposed ADC architecture.

  • PDF

A Fuzzy Controller Design for Compensating Backlash at Robot Joint (로봇 관절의 백래쉬 보상을 위한 퍼지 제어기 설계)

  • Ahn, Won-Ki;Kim, Byung-Yoon;Kim, Jin-Hwan;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.192-194
    • /
    • 2006
  • Backlash between meshing gear teeth causes impact, tracking error and undesired vibrations. It is usually minimized by precision gear, spring-loaded anti-backlash gears and precise mechanical adjustment. Although these techniques can help to reduce the backlash gap, its cost is relatively high and performance is limited. And the classic controller is insufficient to control the dynamic system with nonlinearity. For these reason, a fuzzy controller is proposed to compensate the backlash effect at a robot system. The input variables are position error and change in error. The output variable can be defined by input voltage of motor. The performance of a fuzzy controller is verified by comparing with a PID controller. The results show that the undesired vibration is suppressed. And then diminishing the position error is observed.

  • PDF

Nonlinearity-Compensation Extended Kalman Filter for Handling Unexpected Measurement Uncertainty in Process Tomography

  • Kim, Jeong-Hoon;Ijaz, Umer Zeeshan;Kim, Bong-Seok;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1897-1902
    • /
    • 2005
  • The objective of this paper is to estimate the concentration distribution in flow field inside the pipeline based on electrical impedance tomography. Special emphasis is given to the development of dynamic imaging technique for two-phase field undergoing a rapid transient change. Nonlinearity-compensation extended Kalman filter is employed to cope with unexpected measurement uncertainty. The nonlinearity-compensation extended Kalman filter compensates for the influence of measurement uncertainty and solves the instability of extended Kalman filter. Extensive computer simulations are carried out to show that nonlinearity-compensation extended Kalman filter has enhanced estimation performance especially in the unexpected measurement environment.

  • PDF

Measurements of Nonlinearity in homodyne interferometer (Homodyne interferometer의 Non I inear ity 측정)

  • 김종윤;엄태봉;정규원;최태영;이건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.55-59
    • /
    • 2000
  • Nonlinearity is one of the primary causes of error in precision length measurement using laser interferometer. It arises periodically. The periodical nonlinearity usually ranges from sub-naometre to several namertres. In the homodyne interferometer, it results from a number of factors including polarization mixing, imperfect optical clement, unequal gain of detectors, misalignment of axes between input beam and beam splitter. In this paper, we described a method for measuring and compensating the nonlinearity of homodyne interferometer using the elliptical least-square fitting technique associated with electric method and experimental results in one frequency polarization interferometer.

  • PDF

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

ERROR PROPAGATION ANALYSIS FOR IN-ORBIT GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.92-95
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The radiometric model of GOCI has been validated through radiometric ground test. From this ground test result, GOCI radiometric model has been changed from second order to third order. In this paper, the radiometric test performed to evaluate the radiometric nonlinearity is described and the GOCI radiometric error propagation is analyzed. The GOCI radiometric calibration is based on onboard calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). The radiometric model error due to the dark current nonlinearity is considered as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

Nonlinear Damper Model for the Quantification of joint Mechanical Properties (관절계 역학적 특성의 정량화를 위한 비선형 댐퍼모델)

  • EOM Gwang-Moon;LEE Chang-Han;KIM Chul-Seung;Heo Ji-Un
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.188-193
    • /
    • 2005
  • The purpose of this paper is to develop a more precise damper model of the joint for the quantification of the joint mechanical properties. We modified the linear damper model of a knee joint model to nonlinear one. The normalized RMS errors between the simulated and measured joint angle trajectories during passive pendulum test became smaller with the nonlinear damper model than those of the linear one which indicates the nonlinear damper model is better in precision and accuracy. The error between the experimental and simulated knee joint moment also reduced with the nonlinear damper model. The reduction in both the trajectory error and the moment error was significant at the latter part of the pendulum test where the joint angular velocity was small. The nonlinearity of the damper was significantly greater at thin subject group and this indicates the nonlinearity is a useful index of joint mechanical properties.