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1. INTRODUCTION 
 

Process tomography (PT) involves using tomographic 
imaging methods to manipulate measurement data from 
sensors in order to obtain precise quantitative information on 
the inaccessible regions. The region may be for example, a 
furnace, a mixing chamber or a pipeline, and the tomography 
imaging can be based on electromagnetic or acoustic sounding 
or radioscopic imaging. In essence, the goal is to estimate 
computationally the multidimensional distribution of some 
physical parameter based on indirect observations from the 
boundary of the object [10]. 

Typical features of industrial processes are a high noise 
level and rapid changes in the object. Thus, the imaging 
modality has to be sufficiently fast and robust for proper 
dynamical change of the target.  

We consider the problem of imaging the concentration 
distribution of a given substance in a fluid moving in a 
pipeline based on static or low frequency measurements on the 
surface of the pipe. Set of contact electrodes are attached to 
the surface of the pipe, and are electronically insulated from 
the pipe. Electric currents are injected through these electrodes 
and the corresponding voltages needed to maintain the 
currents are recorded. Hence the imaging modality used in this 
case is Electrical Impedance Tomography (EIT).  

As compared to the traditional EIT, in the present case, the 
object is very rapidly changing during the data acquisition; 
hence a reasonable spatiotemporal resolution is desirable. 
Rather than considering the inverse problem as a traditional 
tomography reconstruction problem, we view the problem as 
state estimation problem. The concentration distribution is 
considered as a stochastic process, or a state of the system, 
that satisfies a stochastic differential equation. This equation is 
referred to as state evolution equation. We model the  

 
concentration distribution by the convection-diffusion 
equation, which allows an approximation of the velocity field.  

We consider here approximating a fast flow with a laminar 
flow and compute the velocity field by solving the 
Navier-Stokes equations numerically. Conventionally, the 
state estimation is performed by using Kalman filter, fixed-lag 
Kalman smoother or extended Kalman filter (EKF) algorithm. 
In our case we have used nonlinear-compensation extended 
Kalman filter (NLCEKF). The work flow is explained in 
Fig .1. 

 
 
 
 
 
 

 
 

  
 
Fig. 1. Workflow of the typical reconstruction process in  
Process Tomography (In this case, a straight pipe is  
considered).  
 
The purpose of the present work is to apply NLCEKF to 

dynamic PT for performance enhancement of the dynamic 
image reconstruction in the presence of unexpected 
measurement uncertainty. This unexpected measurement 
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EIT Imaging Modality 
is used to measure 
voltages on electrodes. 

Problem domain is 
discretized and solved 
using Finite Element 
Method. This step is 
called Forward Solver. 

Tomographic image 
reconstruction is done 
through dynamic filter. 
This step is called 
Inverse Solver. 
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uncertainty can be any external short-living perturbation in the 
measurement data. Usually such perturbations cause the 
conventional EKF to diverge and estimation performance is 
deteriorated drastically. The instability of EKF in such cases is 
a major bottle neck for such perturbed systems. In order to 
tackle this problem, NLCEKF is employed in Inverse Solver 
which has already proved its might compared to EKF in 
optimization problems related to other walks of life, especially 
Target Motion Analysis. See [11]. 

 The rest of the paper is organized as follows. In section 2, 
we have explained the discrete state-space dynamic model 
considering convection-diffusion model. For the brevity of 
discussion, we have kept our discussion short. Further details 
on PT can be found in [6-11]. Section 3 deals with EIT applied 
to PT. Only the Observation model is discussed. Section 4 
deals with ins and outs of NLCEKF. Section 5 deals with the 
simulation and comparison of results. 
 
 
2. DISCRETE STATE-SPACE DYNAMIC MODEL 

 
In the case of moving fluids into the straight pipe the 
concentration distribution ),( txcc =  can be modeled by 

the stochastic convection-diffusion equation as follows 
 

µκ +∇⋅−∆=
∂
∂

cvc
t
c �

                      (1) 

 
where )(xκκ =  is the diffusion coefficient, )(xvv

�� =  

is the velocity of the flow and ),( txµµ =  is the 

modeling errors. 
Incompressibility is defined as      
 

0=⋅∇ v                                   (2) 
 
Which represents that density of fluid is same throughout the 
field and it does not change with time.  
Boundary condition is defined as    
 

0=
∂
∂
n
c

     at ( )wallinx
�

Ω∂Ω∂∈ \         (3) 

which means that there is no diffusion through the pipe walls 
and the input boundary, so that the outward unit normal is 
orthogonal to the velocity of the flow in the wall.  
 
Initial conditions are 
 

)()0,( 0 xcxc =                             (4) 

)(),( tctxc in=      at 
inx Ω∂∈            (5) 

 
(4) represents the initial value at 0=t  and (5) represents 
the Dirichlet condition which can be taken into account by 
using the Petrov-Galerkin method. 
 
(1) can be solved in discrete form using the Petrov-Galerkin 
method and the backward (implicit) Euler method as 

 

111 +++ ++= tttt wscFc                     (6) 

 
where NNF ×ℜ∈  is the state transition matrix, 

1
1

×
+ ℜ∈ N

ts  is the input vector and 1
1

×
+ ℜ∈ N

tw  is the 

disturbance vector. 
Here, we assume a linear model satisfying  
 

),(),( txctx λσ =                          (7) 

 
The reason for this assumption of concentration ),( txc  is 

to estimate it by electrical impedance tomography. Since there 
is a direct linear relationship between conductivity and 
concentration, hence by using EIT, we can reconstruct 
conductivity and then can map concentration against it. This is 
the main reason why EIT is used as imaging modality. 

We can obtain the discrete state-space model as follows 
 

∗
+

∗
+

∗
+ ++= 111 tttt wsF σσ                  (8) 

 
where NNF ×∗ ℜ∈ , 1

1
×∗

+ ℜ∈ N
ts  and 1

1
×∗

+ ℜ∈ N
tw  are 

functions to relate between the resistivity ),( txσ  and 

),( txc  linearly. 

Now, let us consider the case in which the time step is too 
large in comparison to the velocity of fluid, for that case, the 
backward Euler method is inaccurate while solving the 
convection-diffusion equation numerically by the evolution 
model.  
Assume the time step nt /∆  is small enough to obtain a 
feasible numerical solution for the stochastic 
convection-diffusion equation. Here, the state equation 
corresponding to the time step nt /∆  is used as follows. [8] 
 

111 +++ ++= tttt wsFσσ                   (9) 

 
Where t∆  is the time step used in the evolution model. 
We can obtain the next step as 
  

1112 ++++ ++= tttt wsFσσ  

  ( ) 2211 ++++ ++++= ttttt wswsFF σ      

  ( ) ( )2121
2

++++ ++++= ttttt wFwsFsF σ  (10) 

Similarly, 

( )321
23

3 ++++ +++= ttttt sFssFF σσ  

( )321
2

+++ +++ ttt wFwwF        (11) 

Furthermore, 

( ) nt
n

t
n

nt sFFF +
−

+ +++= 01
�σσ  

( ) nt
n wFF +

− +++ 01
�  

( )ntntntt
n wsF +++ +Γ+= σ          (12) 

 
where NN

nt
×

+ ℜ∈Γ  is ( )01 FF n ++−
� . 
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Hence, we can obtain the state evolution equation as 

 

( )1111 ++++ +Γ+= tttt
n

t wsF σσ           (13) 

 
Where NNnF ×ℜ∈  is the evolution matrix, 1

1
×

+ ℜ∈ N
ts  

is the input vector and 1
1

×
+ ℜ∈ N

tw  is the disturbance 

vector. 
 
3. ELECTRICAL IMPEDANCE TOMOGRAPHY 

 
When electrical currents ),...,2,1( LlI l =  are injected into 

the object 2R∈Ω  through the electrodes ),...,2,1( Llel =  

attached on the boundary Ω∂  with the internal structure, the 
conductivity distribution ),( yxσ  is known for Ω , then 

corresponding electrical potential ),( yxu  on the Ω  can be 

determined uniquely from the partial differential equation, 
which can be derived from the Maxwell equations as 
 

0)( =∇⋅∇ uσ      in Ω                       (14) 

 
with the following boundary conditions based on the complete 
electrode model: 
 

)(l
l U

n
u

zu =
∂
∂+ σ  on ,le   Ll ,...,2,1=          (15) 

� =
∂
∂

le

lIdS
n
u

,)(σ    Ll ,...,2,1=                 (16) 

0=
∂
∂
n
uσ      on �

L

l
le

1

\
=

Ω∂                   (17) 

 
where, lz  is the effective contact impedance between l th 

electrode and electrolyte, )()()(
k

ll tUU =  is the potential on 

the l th electrode at time k , )()()(
k

ll tII =  is the injected 

current on the l th electrode at time k , 
le  is l th electrode, 

n  is outward unit normal, and L  is the total number of 
electrodes. 
 Furthermore, the following two constraints for the injected 
currents and measured voltages are needed to ensure the 
existence and uniqueness of the solution: 
 

0
1

)( =�
=

L

l

lI                                   (18) 

0
1

)( =�
=

L

l

lU                                   (19) 

 
 The computation of the potential ),( yxu  on the Ω  and 

the voltages )(lU on the electrodes for the given conductivity 
distribution ),( yxσ  and boundary conditions is called the 

forward problem. In general, the forward problem cannot be 

solved analytically, thus we have to resort to the numerical 
method. There are different numerical methods such as the 
finite difference method (FDM), boundary element method 
(BEM), and finite element method (FEM). In this paper, we 
used the FEM to obtain numerical solution. In FEM, the object 
area is discretized into sufficiently small elements having a 
node at each corner and it is assumed that the conductivity 
distribution is constant within each element. The potential 

kU at each node and the electrodes at time k , defined by the 

vector  
 

kkk IRU )(σ=                               (20) 

 
where, )( kR σ  and kI  are the functions of the conductivity 

distribution into the object and the injected currents through 
the electrodes at time k , respectively. For more details on the 
forward solution and the FEM approach, see [8,10] 

Here, let 1×∈ L
k RU , defined as 

 

[ ]TL
kkkk UUUU ...21≡                          (21) 

 
be the measurement voltages on the surface and internal 
electrodes induced by the thk  current pattern. Then the 
observation equation can be described as the following 
nonlinear mapping with measurement noise 
 

kkkk vVU += )(σ                            (22) 

 
where the measurement noise kv  is also assumed to be white 

Gaussian noise with covariance.  
For details on FEM forward solver for EIT, consult chapter 3 
in [12]. 
 

4. INVERSE SOLVER BASED ON 
NONLINEARITY-COMPENSATION EXTENDED 

KALMAN FILTER 
 
4.1 NonLinear-Compensation Extended Kalman Filter 
algorithm   
 From (13 ) and (22), we can obtain the dynamic equations as 
followings 
 

( )kkkk
n

k wsF +Γ+= −1σσ             (23) 

kkkk vVU += )(σ (24) 

 
 In EKF the state estimation is optimized as minimizing the 
cost functional as follows 

}{
2
1

)(
kk

T

k EJ σσ εεσ =  

))(())({(
2
1 1

kkkk

T

kkk hzRhz σσ −−= −               

+ )}()( 1|
1

1|1| −
−

−− −− kkkkk

T

kkk P σσσσ  

 (25) 
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where }{⋅E  is the expectation, 1| −kkσ  is the latest 

predicted state  and LL
kR ×ℜ∈  is }{ T

kk nnE , so that the 

measurement noise covariance. NN
kkP ×

− ℜ∈1|  is the 

time-updated error covariance matrix, which is defined by 
 

}))({( 1|1|1|
T

kkkkkkkk EP −−− −−≡ σσσσ     (26) 

 
 Linearizing (8) about the current predicted state 1| −kkσ  we 

obtain 
 

)()( 1|1| 1| −− −+=
− kkkkkkk kk

HVU σσσ σ  

kvTsOH ++ ..                      (27) 

 
where TsOH ..  represent the higher-order terms which 
will be considered as additional noise, NL

kk
H ×ℜ∈

−1|σ  is the 

Jacobian matrix defined by 
 

 

1|

1|

−

−

=∂
∂

≡
kk

kk

kV
H

ρρ
σ ρ

                        (28) 

 
where ρ  is the resistivity i.e, σ1 . 
Now we define the pseudo-measurement as 
 

1|1| 1|
)( −− −

+−≡ kkkkkkk kk
HVUy σσ σ         (29) 

 
And hence, we can develop the linearized observation 
equation as following 
 

kkk vHy
kk

+=
−
σσ 1|

                        (30) 

 
In comparison to the cost functional defined for image 
reconstruction for EKF, the cost functional for NLCEKF is 
computed as follows 

)ˆ()ˆ{(
2
1

)ˆ( |
1

|| kkkkk

T

kkkkkk xHzRxHzJ −−= −σ
 

+ )}ˆˆ()ˆˆ( 1||
1

1|1|| −
−

−− −− kkkkkk

T

kkkk P σσσσ   (31) 

 
By minimizing the cost functional and solving for the updates 
of the associated covariance matrices, we obtain the NLCKEF  
algorithm which consists of the following two steps similar to 
EKF.  
 
 

(i) Measurement Update Step (Filtering) 
 

[ ] 1

1|1|

−

−− += k
T
kkkk

T
ikkk RHPHHPK         (32) 

( )1|1|| −− −+= kkkkkkkkk HyK σασσ        (33) 

1|

2

| )( −−= kkkkkk PHKIC β                 (34) 

 
 
 

(ii) Time Update Step (Prediction) 
 

  T

kkk

T

kkkkkk QFPFP ΓΓ+=+ ||1
               (35) 

kkkkkk sF +=+ ||1 σσ                        (36) 

 
where NNn

kk FF ×ℜ∈=  is the evolution matrix and 
1×ℜ∈ N

ks  is the input vector. α  is used to adjust the 

Kalman gain kK  in equation (33), the range of α  is 

2~0  and β  is determined by 

 

��

�
�
�

≤<−
≤≤

=
21:2

10:

αα
αα

β                  (37) 

 
Here, the coefficient α  adjusts an optimization value of the  
Kalman gain according to the uncertainty of a measurement 
value. 
When 1=α , the results obtained from state estimation 
problem are equal to the result of conventional EKF. This 
means that NLCEKF is working like conventional EKF. 
When 0=α , the state is not updated. So, a predicted state 
is used instead of a filtered state. This means that when the 
system is estimated by the uncertain measurement noise the 
predicted state is not updated. 
Since β  is a parameter adjusting the error covariance 

matrix of equation (34) depending on α  so the more α  is 
far from 1 the more β  is decreased. 

Also, the process error covariance NN
kQ ×ℜ∈  and the 

measurement error 
kR  is determined by 

 

}{ T

kkk wwEQ =                            (38) 

}{ T

kkk vvER =                             (39) 

 
Where 

kw  is the White Gaussian Noise for the process at 

k  time step and 
kv  is the White Gaussian Noise for 

measurement data at k  time step. 
 
4.2  Temporal Regularization 
 
 Because the dynamic reconstruction is dependent on time, so 
for reconstruction we just need temporal regularization, not 
spatial regularization.  
Temporal regularization is considered in three components as 
follows 
 

IQ
k µµ β=                                 (40) 

IQ
k ηη β=                                 (41) 

IQ
k

'' ηη
β=                                (42) 

 
(40) is the stochastic nature of the diffusion, we assume the 
noise 

kµ  is uncorrelated and having constant variance in all 
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parts of the phantom. (41) represents an uncertain oscillatory 
component in the pipe inlet and (42) means the input stream is 
assumed to be very slowly varying in the time scale.  
Hence, process error covariance is represented as follows 
 

TTT

k HHQDDQYYQQ
kkk
'ηηµ ++=      (43) 

where the matrices Y,D and H are the finite element matrices 

mapping the random vectors 
kµ ,

kη  and '
kη , respectively. 

[8,10] Here, µβ , ηβ  and 'ηβ  is obtained empirically. 

 
 

5. SIMULATION RESULTS 
 
We have carried out the computer simulations on synthetic 
data to evaluate the reconstruction performance of NLCEKF. 
The computer simulation was carried out on a straight pipe 
including varying measurement noise. Parabolic velocity field  
are also considered. 

 
 
 
 
 
 
 

Fig.2. Straight pipe-type FEM mesh(Mesh for inverse 
problem) and electrodes. 
 
The FEM meshes used for the inverse solvers are shown in Fig. 
2. We have used the straight pipe-type model with a mesh size 
of 394 elements and 250 nodes. We have used a fine mesh 
near the boundaries in order to make a good sensitivity 
analysis considering the complications involved in 
measurement. Electrodes are located on each side of pipe as a 
set of 8, the total numbers being 16.  

 
 
 
 
 

Fig. 3. Computed velocity field inside straight pipe. 
 
The velocity field is assumed to satisfy the conditions of 
parabolic flow as shown in Fig 3. Here, the equation with 
respect to the flow across x -direction is  developed as 
follows 

�
�

	


�

�


�

�
�
�

� −−⋅=
2

0
, 1),(

R
yy

vyxv meanxx
      (44) 

 
Where meanxv ,  is the spatial average velocity in x -direction. 

0y  is the index of y as distance from center of the pipe and 

R  is the inner radius of the pipe. 
It is also assumed that the initial average velocity in 
x -direction, meanxv ,  is 450 1−cms . The initial setting for 

parameters used in the simulation is as following. The contact 
impedance z  used in the simulation is 001.0 Ω . The 
convection coefficient χ  is 1105× . Number of frames for  

current injection is 5 . The minimum value of conductivity 
distribution is set to 200/1  11 −−Ω cm  and the maximum 

value of conductivity distribution is set to 400/1  11 −−Ω cm . 
The injection pattern uses the “opposite” method. The time to 
measure voltages of a pattern is set to 5 ms .  
Next, simulations were carried out to analyze effects on the 
image reconstruction by the uncertain measurement noise on 
the following data.  
Initial assumed conductivity is 0043.00 =σ  11 −−Ω cm , 

initial assumed covariance for the initial state vector is 
IC 2

00|0 )1.0( σ∗= , the average velocity in x -direction is 

assumed constant for given time. The covariances with respect 
to the temporal regularization are 3105 −×=µβ  and 

6102 −×=ηβ , 0' =ηβ . The measurement noise kν  is set 

to 0.1% of the difference between the maximum and the 
minimum value of the voltage without the noise. The 
unexpected measurement uncertainty noise consisted of 
White-Gaussian Noise that occurs for 5 time steps from 30th 
step onward.  

 
For the sake of comparison of performance of the 

reconstruction algorithm, root mean square error (RMSE) is 
defined as following  
 

( ) ( ) ( )
( ) ( )true

T
true

ktrue
T

ktrue
k

UU

VUVU
VRMSE

⋅
−⋅−

=
)()(

)(
σσσ    

(45) 
 
We have considered two cases: 3% and 10% of unexpected 
measurement uncertainty noise of the difference between the 
maximum and the minimum value of the voltage without the 
noise. 
 
5.1 Simulation Results : Analysis of unexpected 
measurement uncertainty 
 
 
 
 
 
 
 
 
 
 
 
   (a) RMSE for )(σV         (b) α update in NLCEKF 
 
 
 
 
 
 
 
 
 
 
   (c) RMSE for )(σV         (d) α update in NLCEKF 
 
Fig. 4. (a) and (c) represent RMSE for )(σV with the 
uncertain measurement noise 3% and10% respectively. (b) and 
(d) represent the variation in α cases for the two cases 
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 (a)True    (b)EKF (c)NLCEKF  (d)EKF  (e)NLCEKF  
 
Fig. 5. Image reconstructed according to each uncertain 
measrement noise (between the interval of 28th and 51th time 
steps). (a) True Image Frame. (b) and (c) Image reconstructed  
with 3% uncertain measurement noise. (d) and (e) Image 
reconstructed with 10% uncertain measurement noise. 

 
In Fig. 4 and Fig. 5, we can see that when unexpected 
measurement uncertainty occurs, there is a little fluctuation in 
RMSE with NLCEKF as compared to EKF since EKF 
algorithm just selects the Kalman gain that optimizes linearly 
and can not optimize against the nonlinearity phenomenon. On 
the contrary, NLCEKF modifies the Kalman gain by α , and 
estimation quality is better than EKF in case of nonlinearity. 
 
 

6. CONCLUSIONS 
 

A dynamic impedance imaging technique is applied to the 
visualization of two-phase flow field undergoing rapid 
transient. In th i s  paper, nonlinear-compensation extended 
Kalman filter is employed to cope with the unexpected 
measurement uncertainty. We have pointed out the 
enhancements in the estimation for the cases when uncertain 
noise exists in the system. In those cases, 
nonlinear-compensation extended Kalman filter is far more 
effective than conventional extended Kalman filter in terms of 
spatial resolution of reconstructed image. For the verification 
of our hypothesis, we have simulated a bubbly flow and a slug 
flow and reconstructed the pipe-type images with synthesized 
data and have compared the result based on root mean square 
error. The reconstructed images indicate a good possibility of 
dynamic process tomography system with integrated 
nonlinear-compensation extended Kalman filter to the 
visualization of rapid transient two-phase system undergoing 
sudden perturbation.  
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