• Title/Summary/Keyword: Nonlinear differential equation

Search Result 447, Processing Time 0.029 seconds

Necessary conditions in the optimal control of nonlinear integral equations

  • Wang, Fu-Yang;Lee, In-Beum;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.947-951
    • /
    • 1989
  • A Class of nonlinear distributed parameter control problems is first stated in a partial differential equation form in multi-index notion and then converted into an integral equation form. Necessary conditions for optimality in the form of maximum principle are then derived in Sobolev space W$^{l}$, p/(1 leq. p .leq. .inf.)..

  • PDF

OSCILLATION THEOREMS FOR CERTAIN SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS

  • Sun, Yibing;Han, Zhenlai;Zhao, Ping;Sun, Ying
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1557-1569
    • /
    • 2011
  • In this paper, we consider the oscillation of the following certain second order nonlinear differential equations $(r(t)(x^{\prime}(t))^{\alpha})^{\prime}+q(t)x^{\beta}(t)=0$>, where ${\alpha}$ and ${\beta}$ are ratios of positive odd integers. New oscillation theorems are established, which are based on a class of new functions ${\Phi}={\Phi}(t,s,l)$ defined in the sequel. Also, we establish some interval oscillation criteria for this equation.

Controllability of the nonlinear Fuzzy Integro-Differential Equations on EnN

  • Kwun Young-Chel;Park Dong-Gun;Ahn Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.621-625
    • /
    • 2005
  • In this paper we study the controllability for the nonlinear fuzzy integro-differential equations on $E_N^n$ by using the concept of fuzzy number of dimension n whose values are normal, convex, upper semicontinuous and compactly supported surface in $R^n$. $E_N^n$ the set of all fuzzy numbers in $R^n$ with edges having bases parallel to axis $X_1,\;X_2, ... , X_n$.

APPROXIMATE CONTROLLABILITY FOR SEMILINEAR INTEGRO-DIFFERENTIAL CONTROL EQUATIONS WITH QUASI-HOMOGENEOUS PROPERTIES

  • Kim, Daewook;Jeong, Jin-Mun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.189-207
    • /
    • 2021
  • In this paper, we consider the approximate controllability for a class of semilinear integro-differential functional control equations in which nonlinear terms of given equations satisfy quasi-homogeneous properties. The main method used is to make use of the surjective theorems that is similar to Fredholm alternative in the nonlinear case under restrictive assumptions. The sufficient conditions for the approximate controllability is obtain which is different from previous results on the system operator, controller and nonlinear terms. Finally, a simple example to which our main result can be applied is given.

Observability for the nonlinear fuzzy neutral functional differential equations (비선형 퍼지 함수 미분 방정식에 대한 관측가능성)

  • Lee, C.K.;Y.C. Kwun;Park, J.R.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.337-340
    • /
    • 2001
  • In this paper, we consider the observability conditions for the following nonlinear fuzzy neutral functional differential equations : (equation omitted), where x(t) is state function on E$\_$N/$\^$2/, u(t) is control function on E$\_$N/$\^$2/ and nonlinear continuous functions f:J C$\_$0/ E$\_$N/$\^$2/, k:J C$\_$0/ E$\_$N/$\^$2/ are satisfies global Lipschitz conditions.

  • PDF

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

Steady-state Vibration Responses of a Beam with a Nonlinear Boundary Condition (비선형 경계조건을 가진 보의 정상상태 진동응답)

  • Lee, Won-Kyoung;Yeo, Myeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.337-345
    • /
    • 1997
  • An analysis is presented for the response of a beam constrained by a nonlinear spring to a harmonic excitation. The system is governed by a linear partial differential equation with a nonlinear boundary condition. The method of multiple scales is used to reduce the nonlinear boundary value problem to a system of autonomous ordinary differential equations of the amplitudes and phases. The case of the third-order subharmonic resonance is considered in this study. The autonomous system is used to determine the steady-state responses and their stability.

Stochastic along-wind response of nonlinear structures to quadratic wind pressure

  • Floris, Claudio;de Iseppi, Luca
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.423-440
    • /
    • 2002
  • The effects of the nonlinear (quadratic) term in wind pressure have been analyzed in many papers with reference to linear structural models. The present paper addresses the problem of the response of nonlinear structures to stochastic nonlinear wind pressure. Adopting a single-degree-of-freedom structural model with polynomial nonlinearity, the solution is obtained by means of the moment equation approach in the context of It$\hat{o}$'s stochastic differential calculus. To do so, wind turbulence is idealized as the output of a linear filter excited by a Gaussian white noise. Response statistical moments are computed for both the equivalent linear system and the actual nonlinear one. In the second case, since the moment equations form an infinite hierarchy, a suitable iterative procedure is used to close it. The numerical analyses regard a Duffing oscillator, and the results compare well with Monte Carlo simulation.

EULER-MARUYAMA METHOD FOR SOME NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH JUMP-DIFFUSION

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • In this paper we discussed Euler-Maruyama method for stochastic differential equations with jump diffusion. We give a convergence result for Euler-Maruyama where the coefficients of the stochastic differential equation are locally Lipschitz and the pth moments of the exact and numerical solution are bounded for some p > 2.