Controllability of the nonlinear Fuzzy Integro–Differential Equations on E_N^n

Young-Chel Kwun*, Dong-Gun Park* and Young-Chul Ahn*

*Department of mathematics, Dong-A University, Busan, Korea

Abstract

In this paper we study the controllability for the nonlinear fuzzy integro-differential equations on E_N^n by using the concept of fuzzy number of dimension n whose values are normal, convex, upper semicontinuous and compactly supported surface in R^n . E_N^n be the set of all fuzzy numbers in R^n with edges having bases parallel to axis X_1, X_2, \dots, X_n .

Key Words: fuzzy number of dimension n, fuzzy control, nonlinear fuzzy integro-differential equation

1. Introduction

Many authors have studied several concepts of fuzzy systems. Kaleva[2] studied the existence and uniqueness of solution for the fuzzy differential equation on E^n where E^n is normal, convex, upper semicontinuous and compactly supported surface in R^n . Seikkala[9] proved the existence and uniqueness of fuzzy solution for the initial value problem on E^1 . Subrahmanyam and Sudarsanam[10] studied fuzzy volterra-integral equation. Park etal.[8] are proved the existence and uniqueness of fuzzy solution for the nonlinear fuzzy differential equation on E_N^n with nonlocal initial condition, Kwun etal.[6] are studied controllability for the nonlinear fuzzy control system on E_N^n , where E_N^n be the set of all fuzzy numbers in R^n with edges having bases parallel to axis X_1, X_2, \dots, X_n . For example E_N^2 be the set of all fuzzy pyramidal numbers in R^2 with edges having rectangular bases parallel to the axis X_1 and X_2 .

Recently, Kwun etal [7] are studied the existence and uniqueness of fuzzy solutions for the following nonlinear integrodifferential equations:

$$\begin{cases} \frac{dx(t)}{dt} = a(t)x(t) + f(t, x(t)), \\ \int_0^t k(t, s, x(s))ds) + u(t), \ t \in [0, T], \\ x(0) = x_0. \end{cases}$$
 (1.1)

where $a:[0,T] \to E_N^n$ is fuzzy coefficient, initial value

접수일자: 2005년 6월 3일 완료일자: 2005년 9월 24일

This paper was supported by Dong-A University Research Fund in 2004.

 $x_0 \in E_N^n$ and $f:[0,T] \times E_N^n \times E_N^n \to E_N^n$ and $k:[0,T] \times [0,T] \times E_N^n \to E_N^n$ are nonlinear regular fuzzy functions.

In this paper, we consider the controllability of fuzzy nonlinear integro-differential equation (1.1).

2. Properties of *n*-dimensional fuzzy numbers and metric

In this section, we give some definitions, properties and notations of the fuzzy number of dimension n.

Definition 2.1.([6, 8]) We consider a fuzzy graph $G \subseteq \mathbb{R}^n$ that is functional fuzzy relation in \mathbb{R}^n such that its membership function $m_G(x_1, x_2, \dots, x_n) \in [0, 1]$, $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ has the following properties:

- (1) For all $x_i \in R(i=1,2,\cdots,n)$, $m_G(x_1,x_2,\cdots,x_n) \in [0, 1]$ is a convex membership function.
- (2) For all $\alpha \in [0,1]$, $\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n | m_G(x_1, x_2, \dots, x_n) \ge \alpha\}$ is convex set.
- (3) There exists $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $m_G(x_1, x_2, \dots, x_n) = 1$.

If the above conditions are satisfied, the fuzzy subset G is called a fuzzy number of dimension n.

We denote by fuzzy number in E_N^n , $A=(a_1,a_2,\cdots,a_n)$ where a_i is projection of A to axis $X_i (i=1,2,\cdots,n)$, respectively. And $a_i (i=1,2,\cdots,n)$ is fuzzy number in R

Definition 2.2. The α -level set of fuzzy number in E_N^n is defined by

$$[A]^{a} = \{(x_{1}, x_{2}, \dots, x_{n}) \in R^{n} | (x_{1}, x_{2}, \dots, x_{n}) \in \prod_{i=1}^{n} [a_{i}]^{a}, \ 0 \le \alpha \le 1\}$$

$$(2.2)$$

where

$$[a_i]^a = \{x_i \in R | m_{a_i}(x_i) \ge \alpha, \ 0 \le \alpha \le 1\}$$
 (2.3)

and Π is the Cartesian product of sets.

Definition 2.3. Let $A, B \in E_N^n$, for all $\alpha \in (0, 1]$,

$$A = B \Leftrightarrow [A]^{\alpha} = [B]^{\alpha}$$
.

Definition 2.4. Let $A, B \in E_N^n$, for all $\alpha \in (0, 1]$,

$$[A *_{n}B]^{\alpha} = \prod_{i=1}^{n} [a_{i} * b_{i}]^{\alpha}$$
 (2.4)

where $*_n$ is operation in E_N^n and * is operation in E_N . And $(A*_nB)_i^a = A_i^a * B_i^a$.

Definition 2.5. The derivative $\frac{dx(t)}{dt} \in E_N^n$ of fuzzy process $x(t) \in E_N^n$ is defined by

$$\left[\frac{dx(t)}{dt}\right]^{\alpha} = \prod_{i=1}^{n} \left[\frac{-d}{dt} x_{it}^{\alpha}(t), -\frac{d}{dt} x_{ir}^{\alpha}(t)\right], \quad 0 < \alpha \le 1.$$
(2.5)

Definition 2.6. The fuzzy integral $\int_a^b x(t) dt$ is defined by

$$\left[\int_a^b x(t) dt\right]^a = \prod_{i=1}^n \left[\int_a^b x_{il}^a(t) dt, \int_a^b x_{ir}^a(t) dt\right], \quad (2.6)$$

where $x(t) \in E_N^n$, $a, b \in R$ and $0 < \alpha \le 1$,.

Let $\prod_{i=1}^{n} [a_i]^{\alpha}$, $0 < \alpha \le 1$, be a given family of nonempty areas. If

$$\prod_{i=1}^{n} [a_i]^{\beta} \subset \prod_{i=1}^{n} [a_i]^{\alpha}, \quad 0 < \alpha < \beta \le 1$$
 (2.7)

and

$$\prod_{i=1}^{n} \lim_{k \to \infty} [a_i]^{-a_k} = \prod_{i=1}^{n} [a_i]^{a}$$
 (2.8)

whenever (α_k) is a nondecreasing sequence converging to $\alpha \in (0,1]$, then the family $\prod_{i=1}^{n} [\alpha_i]^{\alpha}$, $0 < \alpha \le 1$, represents the α -level sets of fuzzy number $A \in E_N^n$.

Conversly, if $\prod_{i=1}^{n} [a_i]^{\alpha}$, $0 < \alpha \le 1$, are the α -level sets of fuzzy number R^n , then the condition (2.7) and (2.8) hold true.

We define the metric d_{∞} on E_N^n and the suprimum metric H on $C([0,T]:E_N^n)$.

Definition 2.7. Let $A, B \in E_N^n$,

$$d_{\infty} = \sup\{d_{H}([A]^{\alpha}, [B]^{\alpha}) \mid \alpha \in (0, 1]\}$$

$$= \sup\{\left(\sum_{i=1}^{n} (d_{H}([a_{i}]^{\alpha}, [b_{i}]^{\alpha}))^{2}\right)^{\frac{1}{2}} \mid \alpha \in (0, 1]\}$$

where d_H is Hausdorff distance and a_i , $b_i \in E_N$.

Definition 2.8. The supremum metric H on $C([0,T]:E_N^n)$ is defined by

$$H(x, y) = \sup\{d_{\infty}(x(t), y(t)) \mid t \in [0, T]\}$$

where $x, y \in C([0, T]: E_N^n)$.

Definition 2.9. Nonlinear regular fuzzy function $f:[0, T] \times E_N^n \times E_N^n \to E_N^n$ is satisfied, $x, y \in E_N^n$,

$$f(t, [x]^a, [y]^a) = f\left(t, \prod_{m=1}^n [x_m]^a, \prod_{m=1}^n [y_m]^a\right)$$

$$= \prod_{m=1}^n f_m(t, [x_m]^a, [y_m]^a)$$

$$= \prod_{m=1}^n f_m^a(t, x, y)$$

$$= f^a(t, x, y).$$

3. Controllability

In this section, we show the exact controllability for (1.1).

The equation (1.1) is related to the following fuzzy integral equations:

$$\begin{cases} x(t) = S(t)x_0 + \int_0^t S(t-s)\{f(s,x(s), \\ \int_0^s k(s,t,x(\tau))) d\tau\} ds + \int_0^t S(t-s) u(s) ds, \\ x(0) = x_0. \end{cases}$$
(3.1)

where $S(t) \in E_N^n$ and

$$[S(t)]^{\alpha} = \prod_{m=1}^{n} [S_m(t)]^{\alpha} = \prod_{m=1}^{n} [S_{ml}^{\alpha}(t), S_{mr}^{\alpha}(t)]$$

where

$$S_{mi}^{\alpha}(t) = \exp\left\{\int_{0}^{t} a_{mi}^{\alpha}(s) ds\right\}, \quad i = l, r$$

is continuous. That is, there exists a constant C > 0 such that $|S_{mi}^{\alpha}(t)| \le C$ for all $t \in [0, T]$.

Definition 3.1. The (1.1) is exact controllable if, there exists u(t) such that the fuzzy solution x(t) of (1.1)

satisfies $x(T) = {}_{a} x^{1}$. That is $[x(T)]^{a} = \prod_{i=1}^{n} [x_{i}(T)]^{a}$ $= \prod_{i=1}^{n} [(x^{1})_{i}]^{a} = [x^{1}]^{a}, \text{ where } x^{1} \text{ is target set.}$ Defined the fuzzy mapping $\tilde{g}: \mathcal{P}(R^{n}) \to E_{N}^{n}$ by

$$\tilde{g}^{a}(v) = \begin{cases} \int_{0}^{T} S^{a}(T-s) v(s) ds, & v \subset \overline{\Gamma_{u}}, \\ 0, & \text{otherwise.} \end{cases}$$

Then there exists

 \tilde{g}_i : $\mathcal{P}(R) \rightarrow E_N(i=1,2,\dots,n)$ such that

$$\widetilde{g}_{i}^{a}(v_{i}) = \begin{cases}
\int_{0}^{T} S_{i}^{a}(T-s) v_{i}(s) ds, & v_{i}(s) \subset \overline{\Gamma}_{u_{i}}, \\
0, & \text{otherwise}
\end{cases}$$

where u_i is projection of u to axis X_i , $(i=1, \dots, n)$ respectively and there exists $\tilde{g}_{ij}^{\ a}$ (j=l, r)

$$\begin{split} \tilde{g}_{il}^{a}(v_{il}) &= \int_{0}^{T} S_{il}^{a}(T-s) v_{il}(s) \, ds \,, \\ v_{il}(s) &\in [u_{il}^{a}(s), u_{i}^{l}(s)], \\ \tilde{g}_{ir}^{a}(v_{ir}) &= \int_{0}^{T} S_{ir}^{a}(T-s) v_{ir}(s) \, ds \,, \\ v_{ir}(s) &\in [u_{i}^{l}(s), u_{ir}^{a}(s)]. \end{split}$$

We assume that \tilde{g}_{il}^{a} , \tilde{g}_{ir}^{a} are bijective mappings. We can be introduced u(s) of nonlinear system

$$\begin{split} & \left[u(s) \right]^{a} \\ & = \prod_{i=1}^{n} \left[u_{i}(s) \right]^{a} = \prod_{i=1}^{n} \left[u_{il}^{a}(s) , u_{ir}^{a}(s) \right] \\ & = \prod_{i=1}^{n} \left[\left(\tilde{g}_{il}^{a} \right)^{-1} \left((x^{1})_{il}^{a} - S_{il}^{a}(T) (x_{0})_{il}^{a} \right. \\ & - \int_{0}^{T} S_{il}^{a}(T-s) f_{il}^{a}(s, x_{il}^{a}(s), \int_{0}^{s} k(s, \tau, x_{il}^{a}(\tau)) d\tau) ds), \\ & \left(\tilde{g}_{ir}^{a} \right)^{-1} \left((x^{1})_{ir}^{a} - S_{ir}^{a}(T) (x_{0})_{ir}^{a} \\ & - \int_{0}^{T} S_{ir}^{a}(T-s) f_{ir}^{a}(s, x_{ir}^{a}(s), \int_{0}^{s} k(s, \tau, x_{ir}^{a}(\tau)) d\tau) ds) \right]. \end{split}$$

Then substituting this expression into the (1.1) yields α -level of x(T). For each $i=1, \dots, n$,

$$\begin{split} & [x_{i}(T)]^{a} \\ & = [S_{ii}^{a}(T)(x_{0})^{a}_{il} + \int_{0}^{T} S_{ii}^{a}(T-s)f_{ii}^{a}(s,x_{ii}^{a}(s), \\ & \qquad \qquad \int_{0}^{s} k(s,\tau,x_{ii}^{a}(\tau))d\tau)ds \\ & + \int_{0}^{T} S_{ii}^{a}(T-s)(\quad \tilde{g}_{ii}^{a})^{-1}((x^{1})^{a}_{il} - S_{ii}^{a}(T)(x_{0})^{a}_{il} \\ & - \int_{0}^{T} S_{ii}^{a}(T-s)f_{ii}^{a}(s,x_{ii}^{a}(s), \int_{0}^{s} k(s,\tau,x_{ii}^{a}(\tau))d\tau)ds)ds, \\ & S_{ir}^{a}(T)(x_{0})^{a}_{ir} + \int_{0}^{T} S_{ir}^{a}(T-s)f_{ir}^{a}(s,x_{ir}^{a}(s), \\ & \qquad \qquad \int_{0}^{s} k(s,\tau,x_{ir}^{a}(\tau))d\tau)ds \\ & + \int_{0}^{T} S_{ir}^{a}(T-s)(\tilde{g}_{ir^{a}})^{-1}((x^{1})^{a}_{ir} - S_{ir}^{a}(T)(x_{0})^{a}_{ir} \\ & - \int_{0}^{T} S_{ir}^{a}(T-s)f_{ir}^{a}(s,x_{ir}^{a}(s), \int_{0}^{s} k(s,\tau,x_{ir}^{a}(\tau))d\tau)ds)ds \,] \\ & = [(x^{1})^{a}_{ii}, (x^{1})^{a}_{ir}] = [(x^{1})_{i}]^{a} \end{split}$$

Therefore

$$[x(T)]^{\alpha} = \prod_{i=1}^{n} [x_i(T)]^{\alpha} = \prod_{i=1}^{n} [(x^1)_i]^{\alpha} = [x^1]^{\alpha}.$$

We now set

$$(\Phi x)(t) = {}_{a}S(t)x_{0} + \int_{0}^{t}S(t-s)f(s,x(s), x(s), x(s)$$

2where the fuzzy mappings \tilde{g}^{-1} satisfied above statements.

Notice that $(\Phi x)(T) = {}_{\alpha} x^1$, which means that the control u(t) steers the (F.C.S.) from the origine to x^1 in time T provided we can obtain a fixed point of the operator Φ .

Assume that the following hypotheses:

- (H1) Linear system of (1.1) $f \equiv 0$ is exact controllable.
- (H2) nonlinear regular fuzzy function $f:[0,T]\times E_N^n\times E_N^n\to E_N^n$ and $k:[0,T]\times [0,T]\times E_N^n\to E_N^n$ are satisfy a global Lipschitz condition, there exist K>0 and p>0 such that

$$\begin{split} & d_{H}(f_{i}^{\alpha}(t,x_{1},y_{1}), f_{i}^{\alpha}(t,x_{2},y_{2})) \\ & \leq K(d_{H}([x_{1}]^{a},[x_{2}]^{a}) + d_{H}([y_{1}]^{a},[y_{2}]^{a})), \\ & d_{H}(k_{i}^{a}(t,s,x_{1}),k_{i}^{a}(t,s,x_{2})) \leq pd_{H}([x_{1}]^{a},[x_{2}]^{a}), \end{split}$$

where x_i , $y_i \in E_N$ (i=1, 2).

Theorem 3.1. Suppose that hypotheses (H1), (H2) are satisfied. Then the state of the (1.1) can be steered from the initial value x_0 to any final state x^1 in time T.

Proof. The continuous function from $C([0, T]: E_N^n)$ to itself defined by

$$(\Phi x)(t) = {}_{a}S(t)x_{0} + \int_{0}^{t}S(t-s)f(s,x(s),\int_{0}^{s}k(s,\tau,x(\tau))d\tau)ds + \int_{0}^{t}S(t-s)\tilde{g}^{-1}(x^{1}-S(T)x_{0} - \int_{0}^{T}S(T-s)f(s,x(s),\int_{0}^{s}k(s,\tau,x(\tau))d\tau)ds)ds.$$

There exist $\varphi_i(i=1,\dots,n)$ is continuous function from $C([0,T]:E_N)$ to itself.

Let
$$x, y \in C([0, T] : E_N^n)$$
 there exist $(i = 1, \dots, n)$ $x_i, y_i \in C([0, T] : E_N)$.

$$d_H([\boldsymbol{\Phi}_i \boldsymbol{x}_i(t)]^{\alpha}, [\boldsymbol{\Phi}_i \boldsymbol{y}_i(t)]^{\alpha})$$

$$\leq d_{H}(\left[\int_{0}^{t} S_{i}(t-s)f_{i}(s,x_{i}(s),\int_{0}^{s}k(s,\tau,x_{i}(\tau))d\tau)ds\right]^{\alpha},$$

$$\left[\int_{0}^{t} S_{i}(t-s)f_{i}(s,y_{i}(s),\int_{0}^{s}k(s,\tau,y_{i}(\tau))d\tau)ds\right]^{\alpha})$$

$$+ d_{H}([\int_{0}^{T}S_{i}(T-s)\ \widetilde{g_{i}}^{-1}(\int_{0}^{T}S_{i}(T-s)$$

$$f_{i}(s,x_{i}(s),\int_{0}^{s}k(s,\tau,x_{i}(\tau))d\tau)ds)ds]^{a}, [\int_{0}^{T}S_{i}(T-s)\ \widetilde{g_{i}}^{-1}$$

$$(\int_{0}^{T}S_{i}(T-s)f_{i}(s,y_{i}(s),\int_{0}^{s}k(s,\tau,y_{i}(\tau))d\tau)ds)ds]^{a})$$

$$\leq d_{H}(\int_{0}^{t}[S_{i}(t-s)f_{i}(s,x_{i}(s),\int_{0}^{s}k(s,\tau,x_{i}(\tau))d\tau)]^{a}ds,$$

$$\int_{0}^{t}[S_{i}(t-s)f_{i}(s,y_{i}(s),\int_{0}^{s}k(s,\tau,y_{i}(\tau))d\tau)]^{a}ds)$$

$$+ d_{H}([\ \widetilde{g_{i}}(\ \widetilde{g_{i}}^{-1}(\int_{0}^{T}S_{i}(T-s)f_{i}(s,x_{i}(s),\int_{0}^{s}k(s,\tau,x_{i}(\tau))d\tau)ds))]^{a},$$

$$[\ \widetilde{g_{i}}(\ \widetilde{g_{i}}^{-1}(\int_{0}^{T}S_{i}(T-s)f_{i}(s,y_{i}(s),\int_{0}^{s}k(s,\tau,y_{i}(\tau))d\tau)ds))]^{a})$$

$$\leq CK(t+\frac{bt^{2}}{2})d_{H}([x_{i}(t)]^{a},[y_{i}(t)]^{a})$$

$$+ CK(T+\frac{bT^{2}}{2})d_{H}([x_{i}(t)]^{a},[y_{i}(t)]^{a})$$

$$= CK\{(t+\frac{bt^{2}}{2})+(T+\frac{bT^{2}}{2})\}d_{H}([x_{i}(t)]^{a},[\theta y]^{a})$$

$$= \sup_{a\in[0,1]}\sum_{i=1}^{n}(d_{H}([\theta_{i}x_{i}(t)]^{a},[\theta_{i}y_{i}(t)]^{a}))^{2}\}^{\frac{1}{2}}$$

$$= CK\{(t+\frac{bt^{2}}{2})+(T+\frac{bT^{2}}{2})\}$$

$$\times \sup_{a\in[0,1]}\left\{\sum_{i=1}^{n}(d_{H}([x_{i}(t)]^{a},[y_{i}(t)]^{a}))^{2}\right\}^{\frac{1}{2}}$$

$$= CK\{(t+\frac{bt^{2}}{2})+(T+\frac{bT^{2}}{2})\}\sup_{a\in[0,1]}d_{\infty}(x,y).$$

$$\text{Hence}$$

$$H(\theta x,\theta y) = \sup_{t\in[0,T]}CK\{(t+\frac{bt^{2}}{2})+(T+\frac{bT^{2}}{2})\}d_{\infty}(x,y)$$

$$\leq \sup_{t\in[0,T]}CK\{(t+\frac{bt^{2}}{2})+(T+\frac{bT^{2}}{2})\}d_{\infty}(x,y)$$

We take sufficiently small T, $2CK(T + \frac{pT^2}{2}) < 1$. Hence Φ is a contraction mapping. By the Banach fixed point theorem, Φ has fixed point.

 $= 2CK(T + \frac{pT^2}{2})H(x, y).$

References

- [1] Diamond, P. and Kloeden, P. E.(1994), Metric Spaces of Fuzzy sets, World Scientifi.
- [2] Kaleva, O.(1987), Fuzzy Differential Equations, Fuzzy Sets and System, 24, 301–317.
- [3] Kaufman, A., and Gupta, M. M.(1991), Introduction to Fuzzy Arithmetic, Van Nostrand Reinhold.

- [4] Kloeden, P. E.(1982), Fuzzy dynamical systems, Fuzzy Sets and Systems, 7, 275–296.
- [5] Kwun, Y. C. and Park, D. G.(1998), Optimal control problem for fuzzy differential equations, Proceedings of the Korea-Vietnam Joint Seminar, 103-114.
- [6] Kwun, Y. C., Park, J. S., Kang, J. R. and Jeong, D. H.(2003), The exact controllability for the nonlinear fuzzy control system in E_Nⁿ, J. of Fuzzy Logic and Intelligent Systems, 13(4), 499–503.
- [7] Kwun, Y. C., Han, C. W., Kim, S. Y. and Park, J. S., Existence and Uniqueness of fuzzy solutions for the nonlinear fuzzy integro-differential equation on E_N^n , International J. of Fuzzy Logic and Intelligent Systems, 4(1), 409-44.
- [8] Mizmoto, M., and Tanaka, K.(1979), Some properties of fuzzy numbers, Advances in Fuzzy Sets Theory and applications, North-Holland Publishing Company, 153–164.
- [9] Park, J. S., Kim, Y. S., Kang, J. R. and Kwun, Y. C.(2001), The existence and uniqueness of solution for the nonlinear fuzzy differential equations with nonlocal initial condition, J. of Fuzzy Logic and Intelligent Systems, 11(8), 715–719.
- [10] Seikkala, S.(1987), On the fuzzy initial value problem, Fuzzy Sets and Systems, 24, 319-330.
- [11] Subrahmanyam, P. V. and Sudarsanam, S. K.(1996), A note fuzzy volterra integral equations, Fuzzy Sets and Systems, 81, 237-240.

저 자 소 개

Young-Chel Kwun

He received the Ph.D. degree in Mathematics from Dong-A university, Korea in 1990. Since 1992, he has a professor in department of mathematics , Dong-A University, Busan, Korea.

E-mail : yckwun@dau.ac.kr

Dong-Gun Park

He received his B.S and M.S. degree Mathematics department in Dong-A university, Busan, Korea in 1996 and 1998 respectively. Currently, he is pursuing a PH. D. degree in the department of Math. at Osaka University. His research interests include semigroup theory, control theory and fuzzy control theory.

E-mail: dgpark@dau.ac.kr.

Young-Chul Ahn

He received his B.S and M.S. degree Mathematics department in Dong-A university, Busan, Korea in 1980 and 1982 respectively. His research interests include semigroup theory, control theory and fuzzy control theory.

E-mail: math0623@hanmail.net