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NECESSARY CONDITIONS IN THE OPTIMAL CONTROL OF NONLINEAR INTEGRAL EQUATIONS
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A Class of nonlinear distrubuted parameter control problems is fir§t statgd in a part@al
differential equation form in multi-index notaion and then converted into an integral equation

form.

in Sobolev space W “*P(lsp< «),

1. Introduction

Derivations of optimal control theory and algori-
thms in the past for lumped as well as distributed para-
meter systems have been mostly based on ordinary or par-
tial differential equations rather than integral equa-
tions (for example, [1-4]). In this paper, we present
how an optimal control theory in the form of maximum
principles based on nonlinear integral equations can he
rigorously derived in Sobolev space WP(1=p= ). The
control problem is first stated in a nonlinear partial
differential cquation form in multi-index notation and
thew converted into an integral equation by means of
Green's function technique. Then the necessary condi-
Lions for optimality in the form of maximum principles
are then derived. Techniques for nonlinear differential
equations in Sobolev space [5] are used in treating the
equations appearing in the course of treatment.

2. Statement of the Problem

We consider a control system described by a nonli-
near partial differential equation of the form

v
—=Lv+Nvi+Sy (1)
at
subject to initial and boundary conditions
1.C. v(x,0)=v,(x) (=specified} (2)
B.C.

Ay ( 6Ev:axi,t)=C£( O V. lg; sup(t)sdxg,t) (3)

where I is a linear partial operator with order 1 and
N'is a nonlinear operator with order 2k (k<l) given by
the multi-index notation

18l B

Lv=2(-1) D"v (4)
1pist
N v =,d\75,§—1)‘°“ D% a, (0.t o Vo0, (0.8),0,(1)  (5)

Here x = x (%,,Xp,...,X )u€R"is the spatial coordinate
vector and t€[0,tg) = T is time; veR the state vari-
able, u,(x,t) the domain control, u,(t) time dependent
control, ug; (3%;,t) (i=1,2,...,s) the boundary con-
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Necessary cquitions for optimality in the form of maximum principle are then derived

trol, ax; a point on the boundarya;andaq =3 3¢,

DA}

I=mx (1-1, 2k-1}), |2 |=k, [# | = 1where @ =
(o, @g,, an ) = ( By, Ba,..., By) with

o = Sa;, [ ] =Fp; . S, is an algebraic
function of X and t satisfying a condition imposed

later.

The optimal control problem can be stated: Find
controls wy(x,t)€U, uy(t)€ Uy, uglax,,t) €Uy (i=1,
2,...,s) that minimize the objective function

(te r
7l 1 Kivyusx,t) dxdt + ] R(vix,ty) dx
10 1 1 Q2
+ X Fi(v,ugy,u,(t),ex,,t) dax; dt
S0 Jaq
(te
ooV (.t dt (6)
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where Uy, U,, Uz;are admissible contrpl sets and K, R,
F; (1=1,2,...,s), V are scalar functions of respective
arguments.  In order to recast this optimal control
problem into an integral equation formulation, certain
conditions must be met. Further additional conditions
must be met  to guarantee the existence of necessary
conditions for optimality in the qum of maximum prin-
ciples in various Soholev Spaces W F[QxT] for 1<p <«
«, We state these conditions.

3. The Class of Functions and Conditions

Condition 1 Green's function Gr(x,t: ¥,z) exists for
the Iinear equation

sV
—=Lv,
at

B.C. A

{ SIV:gxi’t) =0 (7)

and satisfics mecmdﬁﬂmsinwk*,zgpSw
fte (
P |D§“”anr (x,t:5,0) [Tix dt ¢
Y

0
fte f

L F dder st Pakace =
0 1o



e (
g 10?90;‘& (ax;,t5},7) | dax; dt < o
10 ey

,
1’ 026r (x,£:3,0) [P < - (8)
§2

ite !
| f| |D;‘Gr (x,t:a%,7) |Pda};d‘r< w
V-0

where |®|, | @ | = k and,in Ve 1<p2

Dy Gr(x, ti3,0) | = M on [T x [xT) 9

except perhaps at t=7=0, for a positive constant M.

Condition 2 ag in (5) satisfies the so-called Cara-
theodory conditions in WP(p=1) (see [5] for defini-
tion).

a €CAR(p), €CAR*(p), € CAR™(p) (10)

Condition 3 For S, in (1) satisfies

Mt Sy(po dbdr €W P ()

|
10 1 Q
for 1._p. ~. This holds whenever S;€ Lpn for some p"

>1 and L,CLor. This guarantees the existence of weak
solution’ of (1).

vatmx with respect to argument functions and satlsfy
Lipschitz conditions.

Gondition 5 Control functions u,, u,, and ug; belong
Lo admissible control sets Uy, U, and Us;, respective-
ly.

4. Conversion to Integral Equation Formulation

Under the conditions stated above, the partial
differential equation in (1) can be recast into an in-

tepral equation:
{
B "ﬁ’g‘shf()t N0 dy it
v 8 |(tf|( Ke "Dy Gr (x,t52 )
=0 5 (v.uy(7), u_,,L 3%;,7) dajde
+ |: o Gr(x,t,%,0) vo d§ + S (x,t) (12)

where ¢; is an w;-dimensional vector function and

(tf {

St = | '] 6rS, () dpde ewkP (13)
10 IQ

Then we have

(tf{
Dfv(x,t) = » a (5,7 oy, u ,ug(t)) D7
* O P MR (x,635,%) ay 51
+ 8 . 0l T(D“G)C] aY;
&l 'm b Dy 6) €] dakidw

{
o DEGr v(¥) dy + D2S (x,t) (14)

where 1= |¥| = 9

If we d(‘notev-[D'P , S = [DS] for | 9| =k,
etc., (12) can be wrltten in expanded matrix and vec-
tor nntdtmn as

{"tf i
vix,t)= | | G(x,tig,9f(v,u, k)
10 JQ o(t-7) dy dv
(
Y] gty ud dy
rQT
rte
+f | f| g:(x,t:9%) Ci(v,uai5,(t t):84:,7)
=1 Jagy; o(t-7) ;dr
+ S (x,t) (15)

where v € R™ is the state: a, is absorbed 1n £ Rk

G is an n x k kernel matrix containing D ? Gr for
7. | o | = kas elements; g (x,t;%) €’R" is a
vector containing D2 6r (x,t:%,0; (i€ R"" accounts
for the boundary comhtmns, gy isannxw kernel
matrix containing D.ZD*Gr (x;ti3%,0); and o(t-9
is the Heaviside un1t sfep function.

5. Hamiltonian Functions and Costate Equations

We now maximize (-J;) in (6) subject to the con-
verted nonlincar integral equation (15). We let J =
(-J;). Then the augmented objective function J to be
maximized is

- (tf r -
Jo= | R ot Aty
0 Q - ~

T

£7(v,0,,01)5 %,£)Q0x,t)-A'S(x,t) Jdxdt
tf

-
te |0 s [F(3x,,t) + Y] v(ox,v)

:
- 07050005 ax, 0 Pl ax,, t)
- $NS(ax . t))dax; dt

(t.
' |)0f[—V(t)]dt (16)

{ T

0 = I’ | [IAT(3.0 6 (5oxt)) o(z-t)dpde
~ o2 s

- T
+ A 6 X,

';Q[ A $) 6 (htant)] d

)
| (% 1580 66k Tx, m
e, Jlz-t)day; dr (17

[A(}v) glbmaxg, ) ] o (T-t)dpde

( (2D (5.t !
+ (5. tedx,t d
')Q A g ax;,t)] §



fte f T
.~ f i a} ) (3% tax;, 1))
=0 a(r—t)rla;J dx

)aQ{J (18)

and X, Ay, $;are costate vectors.

“For the perturbed changes 4y, ALz and Au U 3¢5 the

increment of the augmented obJectlve function is

N 7 aK af "
AT= | T fay(xtl- — +A- — Q]
0 )0 v T ooy 7

“AyK -y £T0 - Ag LY dx ot

Al dx

f
+], A

3R
A.Y,T(X’t#')[_ —
Q EM

(te SF;

S e - =+

=1 JQ Jaqy; ay v~

Y .
- -4y (i Buy LB ay LY dax;dt

ay

o (
+ ] Teag vt + 19)
‘}0 E—Z ’7

where % is the remainder teom and AuB is defined as
Ayl =8 (u+ay,.,.) - B (u,.,.). " In (16), we de-
fine the domain Hamiltonian function as

By,

wat)ix,t) = Klw,sxt) - £7(u,, ix,t)Q (20)

We also define the boundary Hamiltonian functions as
At)sex,t) =

hi(uy.n (ua(,axl,t)

- vy, ,axt,t)T}‘ 21)

and the time dependent Hamiltonian function as

Hy(ugit) = Vg + | - £ (u,u,)0 dx
1 Q
S
o - f (Wanug) Pidoxg (22)
=g, >
The domain costate equation is defined as
3K SfT aH
)&(xt)~*—+———Q (= - -—) (23)
ay av ¥ 3y
the boundary costate functions as
3r, EY
Plax,t) = +—= .
~ avlex;,t)  aylex;,t) ~'
ah;
(= -~ —) (i=12,...,8) {24)
av(ax;,t)
and the final-time costate function as
M(x,t ) = (25)

Then (19) becomes

949

- (t{_\ {
Al = | | A4ypH dxdt
o ~
s (t,F {
2| | AE;;hi dax; dt
=0 JaQy;

v Fay et + 2
o ulirdt + 3 (26)

The remainder term % can be estimated for a change in

Uy, U,, and u,,, respect1ve1y, over AQ, At and a3Q2; .
Tt tumms out fo b

v aq x At}
for a changedm u
k [@an)” + (at)]

k {(aQ xAt)

71 -

for a change in u, 4 (27)
k (@30 xat)” + (430; x4t)°)
for a chang in 4,;
where
r=2 forl =p<2
(28)
p 2
r=2+ —-~—for2 =p s «
2 p
d=2 forl =p<2
(29)
1
d=2~-— for 2 2p = o
Y

and k is a constant.

6. Necessary Conditions for Optimality
(Maximum Principles)

Once the derivation and the estimate of % avail-
able, we can now state the maximum principles for
optimality for the ponlinear integral equation (15).
The proof is straightfoward from (26)-(29) and it is
omitted here.

Theorem 1. (Maximum principle for domain control u,)

Ifu, *(x,t) minimizes Jy for given U, (t) and U,
(i =1,2,... s), then H(x,t) must attaln 1€é absolute
maximum w1th respect to y,(x,t) at y; *(x,t) almost
everywhere (a.e.) on Q x T.

Theorem 2. (Maximum principle for boundary controls

Uat

If u 5. *@x;,t) minimizes Jy for given u,(x,t),
U, (t) and w55 (ax5,t) (j#1), then hj(ax;,t) must
attam its absolute maximum wlth respect tou,, at
u31 a.e. on 99 xT.
Theorem 3. (Maximum principle for spatially inde-
pendent boundary controls E;i)

In Theorem 2, if uj,(sx;,t) is spatially inde-
pendent, i.e. it appears on the whole boundary
wriformly as »‘14(t) then
S ‘

N hy(dx;,thdax;

p must attain its absolute max-
=1 a0,



imum with respect to u (t) at E:It) a.e. onT.
Theorcem 4. (Maximum principle for time dependent
control u,(t))

If the time dependent control 1 %(t) minimizes
Jy for given y, (x,t) and g,.(i JZ .., S), then
Hy must attain ‘its absolute Maximum w1th respect to
A, (t) at w *(t) a.e. on T.

7. 11lustrative Example

We consider the following tubular reactor pro-
blem: The egquation given is

v v 3 8V

— a4 ——-b—— (v —) +ulxt) (30)
at ax* ax Ix
1.C. v (x,0) = vy(x)
B.C. v
—_ = C(u,, v(0,t),1)
2X X=
v
o = 0
ax |x=1
O;X;Xf, O;t;t{:, ml:\.u1‘_\'M1, mzsquMz.
The minimizing objective function is
1 ite (x
Jy= — | €| oy uF(x.t) dx d*
2 00
1 IX.F
b— | vty - vy
2 )
! (31)

it
| Foqu2t) dt
)

[

Fquation {30) can be converted

: into the following
integral equation:

vix,t) = l{l,fsr(trxg)[b 5 —;—

tu,($,7)) o(t-7) dfdr
lt.F
-a IIO 6r (t-7, x:0) Cluy, v(0,t)) o(t-7) dv
(Xg
b (t,x:f) v (§) d} (32)
where the Green's function is given by
[}
6r (t-7,x:8) = S e [0 (t-0)] 9w $(%)
¥ =1 (33)

472 cosl(i-1) 7x] (4 =
(i-1) 7* (i=

fx) =

ffe=-a

2,3, ...)
1,2, ..
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v v
We let [ ‘:|= l: v ]and integrating by parts to
V. ax

u(f, )
[bx\/,vz(}',‘r)]

E(t—T,x:O)

ohtain

v ty (x
[ ‘} REMIRED)
v 1070
it
o (t-T)djdT + |)‘C

- Clug,v,(0,7),7) = bvy(0,7T) Clup,vy(0,7)]

(X
o(t-T)dv + |’O‘C§(t»r,x:§) vo($)dy (34)
where
a6r
Gr
G (t-'(,x;}) = ‘5;_ (35)
~ a6r 3%6r
ax axa}
6r k
g (T} - [ 36t ] (36)
9x
The domain Hamiltonian function is
a u,(x,t) T
n=- A uf’(x,t) - [ ! :l Q (37)
2 bv1v2(x,t) ~
where
(te (X by
0-1° f,(iT(Ft,}:x) [ ‘] o(T-t) 8} d
- oJ0 o A2
(X Y
- fﬁT(tf‘t?m [ 4] a3 (38)
t Mot
{
N §(T-t,05%) [q)':] o(t-t) dr
10 $p- |30

The boundary Hamiltonian function is
Clz 2
h=- 2—u2 (t) + [bv,(0,t)+a]C(uz,v(0,t),t)4’ (39)

where N
(ty (x
g | F e [

JO 10
N
t,}:0) f
} [A

Xt -
+ |’ g (t-t,0:0) [LP‘]

] oty apae

+ | g (tg- dt (40)

o(T-t)




The costate equations are

[N}: [Oh%HJJ]Q @
Ay 0 by, (x,t)
[i;ﬂ ] [v(x,t{;—vd(x) :l 2)

[~ 2 { by, +alClug.v,t))

[i] (00 ]t_lgms)

Thesc are the equations to be used to find the opti-
mal control by the use of the theorems of maximum

principles derived above. For example, if we have a,
=az=h=0, u,=D, and C=-e[ uXt) - v¥(0,t) ) then the
objective function is

L Mt - v ) M
J= — {vix,tg) - v, (x dx (44)
Z|)O £ vy

The boundary Hamiltonian function is
4 '

nz—nf[uz‘m—v (0,6)){ |}0 r(z-t,§:0) v(§, te)-vy (§)1dy
(t‘F ‘

+| Tor(z-,0:004, o (T-1)d) (45)
0

and the costate equation becomes

(X
dap®(0,1)( IIG{;Gr('C—t, 0 Iv(E L vy (hds
it
v 1 Toreet.0:0) 4,0 (-t iy (46)
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Now the maximum principle (Theorem 4) can be applied
to obtain the optimal control uy(t), i.e.. we seek
ux(t) that maximizes the boundary Hamiltonian func-
tion h(1). Some numerical results will be presented
at the conference.
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