• Title/Summary/Keyword: Nonlinear Design

Search Result 4,449, Processing Time 0.037 seconds

Reduced-Order Observer Design for Nonlinear Systems Using Input Output Linearization Transformation (입출력선형화 상태변환을 이용한 비선형 시스템의 저차 관측기 설계)

  • 조남훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.907-914
    • /
    • 2004
  • In this paper, we present a reduced-order observer for a class of nonlinear systems based on the input output linearization. While the most results in the literature presented full-order nonlinear observer, we proposed a procedure for the design of reduced-order observer far nonlinear systems that are not necessarily observable. Assuming that there exists a global observer fer internal dynamics and that certain functions are globally Lipschitz, we can design a global reduced-order observer An illustrative example is included that demonstrate the design procedure of the proposed reduced-order observer.

Design of Adaptive Regulator for a Nonlinear Uncertain System (불확실성을 갖는 비선형 시스템의 적응 제어기 설계)

  • Jin, Ju-Wha;Yu, Kyung-Tak;Son, Young-Ik;Seo, Jin-Heo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.153-158
    • /
    • 1999
  • We consider single-input nonlinear systems with unknown unmodelled time-varying parameters or disturbances which are bounded. The main goal is to identify classes of uncertain systems for which the control exist and to provide constructive design procedures. Assuming that the undisturbed nominal system ( ,g) is partially state feedback linearizable, that a strict triangularity condition, a linear parametrization condition, and {{{{ { G}_{r-1 } }}}} hold for the uncertain terms, and that some condition is satisfied in the transformed partially linear system, we design an adaptive regulating dynamic control. At first, we identify classes of nonlinear uncertain systems and give a systematic procedure for the design of a robust regulation for the nonlinear systems.

  • PDF

Design of Kalman Filter of Nonlinear Stochastic System via BPF (블럭펄스함수를 이용한 비선형확률시스템의 칼만필터 설계)

  • Ahn, D.S.;Lim, Y.S.;Song, I.M.;Lee, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1089-1091
    • /
    • 1996
  • This paper presents a design method of Kalman Filter on continuous nonlinear stochastic system via BPF(Block Pulse Function). When we design Kalman Filter on nonlinear stochastic system, we must linearize this systems. In this paper, we uses the adaptive approach scheme and BPF for linearizing of nonlinear system and solving the Riccati differential equation which is usually guite difficult. This method proposed in this paper is simple and have computational advantages. Furthermore this method is very applicable to analysis and design of Kalman Filter on nonlinear stochastic systems.

  • PDF

Nonlinear Optimal Control of an Input-Constrained and Enclosed Thermal Processing System

  • Gwak, Kwan-Woong;Masada, Glenn Y.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • Temperature control of an enclosed thermal system which has many applications including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In this paper, a constrained nonlinear optimal control design is developed, which accommodates input constraints using the linear algebraic equivalence of the nonlinear controllers, for the temperature control of an enclosed thermal process. First, it will be shown that design of nonlinear controllers is equivalent to solving a set of linear algebraic equations-the linear algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear optimal controller is designed based on that LAENC using the constrained linear least squares method. Through numerical simulations, it is demonstrated that the proposed controller achieves the equivalent performances to the classical nonlinear controllers with less total energy consumption. Moreover, it generates the practical control solution, in other words, control solutions do not violate the input-constraints.

A Robust Adaptive Nonlinear Control Design (강인 적응 비선형 제어 설계)

  • Kim, Dong-Hun;Kim, Eung-Seok;Hyun, Keun-Ho;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.703-705
    • /
    • 2000
  • In this paper, we design a robust adaptive controller for a nonlinear systems with uncertainties to be rejected via disturbance adaptation law. The nonlinear system considered in this paper has unknown nonlinear functions being influenced by external disturbance. The upper bounds of unknown nonlinear functions at each time is estimated by using disturbance adaptation law. The estimated nonlinear functions are used to design stabilizing function and control of input. Tuning function is used to estimate unknown system parameter without overparametrization. A set-point regulation error converges to a residual set close to zero asymptotically fast.

  • PDF

Design of Predictive Controller for Chaotic Nonlinear Systems using Fuzzy Neural Networks (퍼지 신경 회로망을 이용한 혼돈 비선형 시스템의 예측 제어기 설계)

  • Choi, Jong-Tae;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.621-623
    • /
    • 2000
  • In this paper, the effective design method of the predictive controller using fuzzy neural networks(FNNs) is presented for the Intelligent control of chaotic nonlinear systems. In our design method of controller, predictor parameters are tuned by the error value between the actual output of a chaotic nonlinear system and that of a fuzzy neural network model. And the parameters of predictive controller using fuzzy neural network are tuned by the gradient descent method which uses control error value between the actual output of a chaotic nonlinear system and the reference signal. In order to evaluate the performance of our controller, it is applied to the Duffing system which are the representative continuous-time chaotic nonlinear systems and the Henon system which are representative discrete-time chaotic nonlinear systems.

  • PDF

A servo design method for MIMO Wiener systems with nonlinear uncertainty

  • Kim, Sang-Hoon;Kunimatsu, Sadaaki;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1960-1965
    • /
    • 2005
  • This paper presents theory for stability analysis and design of a servo system for a MIMO Wiener system with nonlinear uncertainty. The Wiener system consists of a linear time-invariant system(LTI) in cascade with a static nonlinear part ${\psi}$(y) at the output. We assume that the uncertain static nonlinear part is sector bounded and decoupled. In this research, we treat the static nonlinear part as multiplicative uncertainty by dividing the nonlinear part ${\psi}$(y) into ${\phi}$(y) := ${\psi}$(y)-y and y, and then we reduce this stabilizing problem to a Lur'e problem. As a result, we show that the servo system with no steady state error for step references can be constructed for the Wiener system.

  • PDF

An LMI Approach to Nonlinear Sliding Surface Design (비선형 슬라이딩 평면의 설계를 위한 LMI 접근법)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1197-1200
    • /
    • 2010
  • The problem of designing a nonlinear sliding surface for an uncertain system is considered. The proposed sliding surface comprises a linear time invariant term and an additional time varying nonlinear term. It is assumed that a linear sliding surface parameter matrix guaranteeing the asymptotic stability of the sliding mode dynamics is given. The linear sliding surface parameter matrix is used for the linear term of the proposed sliding surface. The additional nonlinear term is designed so that a Lyapunov function decreases more rapidly. By including the additional nonlinear term to the linear sliding surface parameter matrix we obtain a nonlinear sliding surface such that the speed of responses is improved. We also give a switching feedback control law inducing a stable sliding motion in finite time. Finally, we give an LMI-based design algorithm, together with a design example.

Development of the Optimal Design Technique for the Pneumatic Vibration Isolation System by Nonlinear Modeling and Analysis (공압방진시스템의 비선형 모델링과 해석을 통한 최적설계기술 개발)

  • 문준희;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.151-154
    • /
    • 2001
  • The pneumatic vibration isolation systems have been widely used in industry and laboratories, but the full mathematical analysis and nonlinear modeling techniques have not been reported yet, even while the nonlinear features of the pneumatic vibration isolation system decide the main characteristics. For instance, the orifice in a pneumatic vibration isolator has been traditionally considered as a simple viscous damper, which was too much simplified to explain the performance of the isolation system. In this paper, the nonlinear characteristics are considered for the orifice and chamber, etc. The numerical simulation is carried out by the MATLAB/Simulink software. From the analysis result, a clear trend of the nonlinear features is shown: the vibration transmissibility changes not only due to the excitation frequency but also due to the amplitude of the vibration excitation. Therefore various design parameters are optimally chosen for the vibration isolation system. The proposed methods show good compatibility between the analysis results and the experiments.

  • PDF

Design of IMC Controller for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • 강정규;김정수;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.236-236
    • /
    • 2000
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC systems is their robustness with respect to a model mismatch and disturbances. But it was difficult to apply for nonlinear systems. Adaptive Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to identify a nonlinear dynamical systems. In this paper, we propose new IMC design method using adaptive neuro-fuzzy inference system for nonlinear plant. Numerical simulation results show that proposed IMC design method has good performance than classical PID controller.

  • PDF