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Abstract: This paper presents theory for stability analysis and design of a servo system for a MIMO Wiener system with

nonlinear uncertainty. The Wiener system consists of a linear time-invariant system(LTI) in cascade with a static nonlinear

part ψ(y) at the output. We assume that the uncertain static nonlinear part is sector bounded and decoupled. In this research,

we treat the static nonlinear part as multiplicative uncertainty by dividing the nonlinear part ψ(y) into φ(y) := ψ(y) − y and

y, and then we reduce this stabilizing problem to a Lur’e problem. As a result, we show that the servo system with no steady

state error for step references can be constructed for the Wiener system.
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1. Introduction

Although many control system design methods have been

proposed for nonlinear systems. There are several techni-

cal problems to be solved in their actual applications. The

Wiener system is not only a simple but also a practical

expressions of nonlinear systems. This is because various

identification methods have been proposed for Wiener sys-

tems[1][2][6] on one hand, and on the other hand many linear

control design methods can be applied to this system. Espe-

cially, in the area of process control, many examples of sys-

tem identification and control system design using Wiener

system have been reported[3]. To the best of our knowledge,

however, servo system designs for Wiener systems have not

been presented so much.

In this paper, we consider the stability analysis and design

problems of a servo system for the MIMO Wiener system

with nonlinear uncertainty. Our approach here is to reduce

this stabilizing problem to a Lur’e problem. For stability

analysis of Lur’e system, the Circle criterion and Popov cri-

terion are well-known as useful tools[5], and they can be

stated briefly that, if the dynamic linear part is strictly posi-

tive real, absolute stability is guaranteed, which will be used

in this research. In Section 4, we show that, even if the dy-

namic linear part is “positive real”, absolute stability of the

system is guaranteed, thereby relaxing the sector conditions.

In Section 5, we introduce a design method which enables

to design a specified decoupled transfer function. In Section

6, we show the absolute stability of the servo system when

a step reference signal is added to the system. In Section 7,

the evaluation of the controller performance is presented via

simulation. Finally, in Section 8, some concluding remarks

are presented.

2. Preliminary

2.1. Definition

We define some basic notions for the static nonlinearity as

well as an LTI system.

Definition 1: A memoryless function φ : [0,∞)×Rm → Rm

is said to belong to the the sector [K1, K2] with K = K2 −
K1 = KT > 0(See Fig. 1) if

[φ(t, y) − K1y]T [φ(t, y) − K2y] ≤ 0

K2y

K1y

y

φ
φ(y)

Fig. 1. Sector restriction

Definition 2: A p × p proper rational transfer function ma-

trix G(s) is called positive real if G(s) satisfies the following

conditions.

• The poles of all elements of G(s) are in Re[s] ≤ 0

• For all real ω for which jω is not a pole of any ele-

ment of G(s), the matrix G(jω) + GT (−jω) is positive

semidefinite.

• Any pure imaginary pole jω of any element of G(s) is a

simple pole and the residue matrix lims→jω(s−jω)G(s)

is Hermitian and positive semidefinite.

The transfer function G(s) is called strictly positive real if

G(s − ε) is positive real for some ε > 0.

2.2. Lur’e system

Consider the feedback connection of Fig. 2. We assume

that the external input r is 0 and study the behavior of the

unforced system, represented by

ẋ = Ax + Bu (1a)

y = Cx + Du (1b)

ui = −φi(yi), 1 ≤ i ≤ p (1c)
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where x ∈ Rn, u, y ∈ Rp, (A, B) is controllable, (C, A) is

observable, and φ : [0,∞)× Rm → Rm is a locally Lipschitz

memoryless nonlinearity that belongs to the sector [0, ki].

We assume that the transfer function G(s) = C(sI −A)−1B

is strictly proper and φ is time-invariant and decoupled, that

is, φi(y) = φi(yi).

G(s)

φ(y)

−
+r u y

Fig. 2. Lur’e system

3. Problem Formulation

We consider the system described by Fig. 3.

C(s) ψ(y)−
+ y zr P (s)u

Wiener System

Fig. 3. Feedback control system for Wiener system

Part of the figure enclosed by the dotted line is the Wiener

system of our concern, where P (s) is the dynamic linear

part, ψ is the uncertain static nonlinear part and C(s) is a

controller. The dynamic linear part P (s) is described by the

following equation:

ẋ = Ax + Bu (2a)

y = Cx (2b)

where x ∈ Rn is the state, u ∈ Rm is the control input, y ∈
Rm is the output of the dynamic linear part, A is Hurwitz,

(A, B) is controllable and (C, A) is observable.

We assume that the uncertain static nonlinear part ψ satis-

fies Assumption 1.

Assumption 1:

1) ψ(y) = [ψ1(y1), · · · , ψm(ym)]T

2) ψ is sector bounded (ψi ∈ [0,∞])

3) ψ(y) = 0 if and only if y = 0

Under this assumption, we show that the closed-loop sta-

bility criterion and the servo system with no steady state

error for step references r can be constructed for the Wiener

system with the nonlinear uncertainty ψ.

4. Stability analysis

We transform the system described by Fig. 3 equivalently

to the system described by Fig. 4 where H(s) = P (s)C(s).

To do this transform, we treat the static nonlinear part ψ as

multiplicative uncertainty φ := ψ(y) − y and then stabilize

the closed-loop system using a standard linear control theory.

Here we consider an observer-based linear control system ,

and stabilize the closed-loop system by using the free param-

eter of Youla Parameterization. To be more specific, in view

of the fact that the static nonlinear part treated as multi-

plicative uncertainty and the dynamic linear part constitutes

H(s)
−

+ zr y

ψ(y) − y
w

++

φ

Fig. 4. Transformation of Fig. 3

a closed-loop system, we reduce this stabilizing problem to

a Lur’e problem(Fig. 2).

The following lemma called Popov criterion is well-known as

a stability criterion for Lur’e system(See [5]).

Lemma 1: Consider a special case of the system (1), given

by

ẋ = ALx + BLu (3a)

y = CLx (3b)

ui = −φi(yi), 1 ≤ i ≤ p (3c)

where x ∈ Rn, u, y ∈ Rp, (A, B) is controllable, (C, A) is

observable, and φ : [0,∞) × Rp → Rp is a locally Lipschitz

memoryless nonlinearity that belongs to the sector [0,∞].

The system (3) is absolutely stable if, for 1 ≤ i ≤ p, φi ∈
[0, ki], 0 < ki ≤ ∞, and there exists a constant γi ≥ 0, with

(1+λkγi) 6= 0 for every eigenvalue λk of A, such that M+(1+

sΓs)G(s) is strictly positive real, where Γ = diag(γ1, · · · , γp)

and M = diag( 1
k1

, · · · , 1
kp

).

4.1. Extension of Popov Criterion

In this section, we extend Popov criterion to positive real

lemma under the following assumption.

Assumption 2: φ(y) = 0 if and if only y = 0

Lemma 2: Consider the autonomous system

ẋ = f(x)

where x̄ = 0 is an equilibrium point; that is, f(0) = 0.

Let V : Rn → R be a continuously differentiable, radially

unbounded, positive definite function such that V̇ ≤ 0 for

all x ∈ Rn. Let S = {x ∈ Rn|V̇ (x) = 0} and suppose that

no solution can stay identically in S, other than the trivial

solution x(t) ≡ 0. Then, the origin is globally asymptotically

stable.

Using Lemma 2 and Assumption 1, we obtain the following

theorem.

Theorem 1: The system (3) is absolutely stable if, for

1 ≤ i ≤ p , ψi ∈ [0,∞] and there exists a constant γi ≥ 0 ,

with (1 + λkγi) 6= 0 for every eigenvalue λk of A , such that

(I + sΓ)G(s) is positive real, where Γ = diag(γ1, · · · , γp).

Proof: We prove this theorem in two steps. First, We

search a Lyapunov function which is positive definite and

radially unbounded, and prove that the derivative V̇ is semi-

negative definite function. Second, we prove that no solu-

tion can stay identically in S, other than the trivial solution

x(t) ≡ 0 where S = {x ∈ Rn|V̇ (x) ≡ 0}.
(i) The loop transformation of Fig. 5 obviously results in

a feedback connection of H̃1 and H̃2, where H̃1 is a linear
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G(s)

φ(y)

(I + sΓ)

(I + sΓ)−1

−
+G(s)

φ(y)

−
+

H̃1

H̃2

⇔

u y

Fig. 5. Loop transformation

system whose transfer function can be expressed as

(I + sΓ)G(s) = (I + sΓ)CL(sI − AL)−1BL

= CL(sI − AL)−1BL + ΓCLs(sI − AL)−1BL

= CL(sI − AL)−1BL

+ ΓCL(sI − AL + AL)(sI − AL)−1BL

= (CL + ΓCLAL)(sI − AL)−1BL + ΓCLBL

where {AL, BL, CL} is a minimal realization of G(s). Thus,

(I + sΓ)G(s) can be realized by the state model {A,B, C,D}
, where A = AL , B = BL , C = CL +ΓCLAL , D = ΓCLBL.

Let λk be an eigenvalue of AL and vk be the associated

eigenvector. Then

(CL + ΓCLAL)vk = (CL + ΓCLλk)vk = (I + λkΓ)CLvk

The condition (1 + λkγi) 6= 0 implies that (A, C) is observ-

able; hence, the realization {A,B, C,D} is minimal. Thus, if

(I + sΓ)G(s) is positive real, we can apply the positive real

lemma to conclude that there exist matrices P = P T > 0 ,

L , and, W such that

PAL + AT
LP = −LT L (4a)

PBL = (CL + ΓCLAL)T − LT W (4b)

W T W = ΓCLBL + BT
LCT

L Γ (4c)

and V = ( 1
2
)xT Px is a storage function for H̃1(See [5]).

Thus, one storage function candidate for the transformed

feedback connection of Fig. 5 is

V = (1/2)xT Px +

p
X

i=1

γi

Z yi

0

φi(δ)dδ

which is used later as a Lyapunov function candidate for the

original feedback connection (3). Here, we note that

σmin(P ) ||x||2 ≤ V (x)

thus, V is positive definite and radially unbounded. The

derivative V̇ is given by

V̇ =
1

2
xT P ẋ +

1

2
ẋT Px + φT (y)Γẏ

=
1

2
xT (PAL + AT

LP )x + xT PBLu + φT (y)ΓCL(ALx + BLu)

Using (4a) and (4b) yields

V̇ = − 1

2
xT LT Lx + xT (CT

L + AT
LCT

L Γ − LT W )u

+ φT (y)ΓCLALx + φT (y)ΓCLBLu

= − 1

2
xT LT Lx + xT CT

L u + xT AT
LCT

L Γu

− xT LT Wu + φT (y)ΓCLALx + φT (y)ΓCLBLu

Substituting u = −φ(y) and using (4c), we obtain

V̇ = −1

2
LT Lx − xT LT Wu − 1

2
uT W T Wu + xT CT

L u

= −1

2
(Lx + Wu)T (Lx + Wu) − φ(y)T y ≤ 0

Thus, V̇ is semi-negative definite function.

(ii) Assume that V̇ (x(t)) = 0 for all t > T . It follows

from the above expression of V̇ that φT (y(t))y(t) = 0 for

all t > T . By Assumption 2 this implies y(t) = 0 for all

t > T , and hence u(t) = −φ(0) = 0 for all t > T . Since

the input and the output of the system {AL, BL, CL} are

both identically zero for all t > T , its state x(t) is also zero

for all t > T by the observability assumption of (CL, AL).

Thus, by the observability assumption again, no solution can

stay identically in S, other than the trivial solution x(t) ≡ 0

where S = {x ∈ Rn|V̇ (x) = 0}.
Remark 1: Note that we need to extend Popov criterion

from strictly positive real condition to positive real condi-

tion since the servo compensator for step reference inputs

contain an integrator.

4.2. Transformation of the sector bound

In this section, we discuss the transformation of sector re-

striction. From the equivalent transformation shown in in

Fig. 6, sector restriction φ(·) ∈ [K,∞] is transfered to

φ̃(·) ∈ [0,∞]. The transfer function of linear part after trans-

formation becomes G̃(s) = G(s) [I + KG(s)]−1. So, we can

similarly apply the transfer function G̃ to Theorem 1.

φ(·)

G(s)

K

K

φ(·)

G(s)
G̃(s)

φ̃(·)

−
+ +

− −

−

+

+

⇔

Fig. 6. Equivalent transformation of Fig. 2

5. Design servo system

In this section, we propose a design method of servo systems.

Our design method enables to design a specified decoupled

transfer function by using the free parameter QB(s) of Youla

parameterization(See [7]). Since this design method decou-

ples the transfer function seen by the nonlinearity φ(y) com-

pletely, it can be applied easily to multi-input multi-output

systems. The transfer function Gyw(s) from w to y in Fig. 4

can be specified by using the free parameter QB(s) of Youla

parameterization in Fig. 7.

In Fig. 7, Gyw(s) is

Gyw = − Gyr(s){KCGC(s)}−1[KC
I

s
+ KF (sI − A

+ LC)−1L + QB(s){C(sI − A + LC)−1L − I}] (5)

where Gyr is the transfer function from r to y described by

Gyr(s) = C{sI − A + BKF + BKC
I

s
C}−1BKC

I

s
(6)
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z − ŷ

P (s)1
s

φ(y)

KC

QB(s)

KF

yr u z

x̂

w

xc

−

−

Observer

Fig. 7. Observer based servo system

From (5) and (6), we obtain

Gyw = − C{sI − A + BKF + BKC
I

s
C}−1B[KC

I

s

+ KF (sI − A + LC)−1L

+ QB(s){C(sI − A + LC)−1L − I}]. (7)

The following rational transfer function is defined based on

the equation (7).

T1(s) :=Ḡyw(s) + C{sI − A + BKF + BKC
I

x
C}−1B

× [KC
I

s
+ KF (sI − A + LC)−1L] (8a)

T2(s) :=C{sI − A + BKF + BKC
I

s
C}−1B (8b)

T3(s) := − C(sI − A + LC)−1L + I (8c)

Here, we assume the specified transfer function Ḡyw of the

decoupled form

Ḡyw(s) = diag
1≤i≤m



Ni(s)

Mi(s)

ff

(9)

Here, we define the achievable class Gyw of Ḡyw(s) in the

sense that Ḡyw −Gyw ≡ T1(s)−T2(s)QB(s)T3(s) = 0, which

is characterized by the following theorem.

Theorem 2: The transfer function Ḡyw(s) is achievable

if and only if the following two conditions hold.

(1) Mi(s) + Ni(s) has s in the factor.

(2) deg Mi(s) − deg Ni(s) ≥ d̃i.

where d̃i is defined as the maximal value of difference be-

tween the degree of the numerator and that of denominator

among all elements in the i-th row.

G(s)−1 =

2

6

6

4

v11(s)
w11(s)

· · · v1m(s)
w1m(s)

...
vm1(s)
wm1(s)

· · · vmm(s)
wmm(s)

3

7

7

5

(wij(s) and vij(s) is irreducible)

[Design Procedure]

(1) Obtain an L such that A − LC is stable.

(2) Obtain the achievable class Gyw and specify a desired

transfer function Ḡyw.

(3) Obtain QB(s) by QB(s) = T2(s)
−1T1(s)T3(s)

−1

6. Stability of servo system

In this section, we discuss the stability of the servo system

shown in Fig. 8 which consists of a plant described as a

nonlinear Wiener model and a servo controller such that an

output signal tracks a step reference asymptotically. For this

purpose, we first show that there exist a unique equilibrium

point in the servo system, and then the output follows the

step reference without offset. A state space representation

of the servo system can be described by

ẋ = Ax + Bu (10a)

ẋC = r − z (10b)

˙̂x = (A − LC)x̂ + Bu + Lz (10c)

ẋq = Aqxq + Bq(z − ŷ) (10d)

u = −Kf x̂ + KCxC + yq (10e)

y = Cx (10f)

z = ψ(y) (10g)

ŷ = Cx̂ (10h)

yq = Cqxq + Dq(z − ŷ) (10i)

where QB(s) = Cq(sI − Aq)
−1Bq + Dq, xq is the state and

yq is the output. We assume that the origin of the system

(10) is absolutely stable for the step reference r = 0 and the

sector restriction of ψ(y) ∈ [0,∞].

z − ŷ

P (s)1
s

ψ(y)KC

QB(s)

KF

yr u z

x̂

xc

−

−

Observer

Fig. 8. Observer based servo system

6.1. Equilibrium point

In this section, We prove that there is an equilibrium point of

the system (10). For this purpose, we expresses the system

(10) in a compact form as follows

d

dt

2

6

6

6

4

x

xc

x̂

xq

3

7

7

7

5

=

2

6

6

6

4

A + BDqC BKc −F BCq

−C 0 0 0

LC + BDqC BKc A − LC − F BCq

BqC 0 −BqC Aq

3

7

7

7

5

|
{z }

A

2

6

6

6

4

x

xc

x̂

xq

3

7

7

7

5

+

2

6

6

6

4

BDq

−I

L + BDq

Bq

3

7

7

7

5

|
{z }

Bw

w +

2

6

6

6

4

0

I

0

0

3

7

7

7

5

| {z }

Br

r (11)

y =
h

C 0 0 0
i

2

6

6

6

4

x

xc

x̂

xq

3

7

7

7

5

where φ(y) = ψ(y) − y , w = φ(y) and F = BKF + BDqC.

First, we prove the nonsingularity of the matrix A. Adding
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the first row of A to the third row of A, and subtracting

the first column of A from the third column of A yields the

following matrix.
2

6

6

6

4

A − BKF BKc −F BCq

−C 0 0 0

0 0 A − LC 0

0 0 −BqC Aq

3

7

7

7

5

This matrix is nonsingular by the stability of Ae − BeKe =
"

A − BKF BKc

−C 0

#

, A − LC and Aq. From this fact, A

is nonsingular. Now, we prove that the equilibrium point of

the servo system is uniquely obtained. Here, we define X̄ as

the equilibrium point of X . From ẋc = r−z = r−(y+φ(y)) ,

it follows that ȳ+ w̄ = ȳ+φ(ȳ) = r. Using the equation (11)

and nonsingularity of A, we obtain the following equation.

ζ̄ = −A−1 (Bww̄ + Brr) , (ζ = [x, xC , x̂, xq]
T ).

This implies the existence and uniqueness of equilibrium

states ζ̄, from which the equilibrium output and input

ȳ, ¯̂y, ȳq, ū, z̄ can be obtained uniquely by using the equation

(10).

6.2. Steady state error of the servo system

In this section, we prove that there is no steady state error

in the servo system. From the equation (10), the following

equations hold in steady state.

0 = Ax̄ + Bū (12a)

0 = r − z̄ (12b)

0 = (A − LC)¯̂x + Bū + Lz̄ (12c)

0 = Aqx̄q + Bq(z̄ − ¯̂y) (12d)

ū = −KF
¯̂x + KC x̄C + ȳq (12e)

ȳ = Cx̄ (12f)

z̄ = ψ(ȳ) (12g)

¯̂y = C ¯̂x (12h)

ȳq = Cqx̄q + Dq(z̄ − ˆ̄y) (12i)

From the equation (12b), it can be seen that there exist

no steady state error for the step reference signal. Next, we

prove that the equilibrium point is absolutely stable. Define

X̃ = X−X̄ , and subtracting the system (10) from the system

(12) yields

˙̃x = Ax̃ + Bũ (13a)

˙̃xC = z̄ − z = −z̃ (13b)

˙̃
x̂ = (A − LC)˜̂x + Bũ + Lz̃ (13c)

˙̃xq = Aqx̃q + Bq(z̃ − ˜̂y) (13d)

ũ = −Kf
˜̂x + KC x̃C + ỹq (13e)

ỹ = Cx̃ (13f)

z̃ = ψ(y) − ψ(ȳ) = ψ(ỹ + ȳ) − ψ(ȳ) := ϕ(ỹ) (13g)

˜̂y = C ˜̂x (13h)

ỹq = Cqx̃q + Dq(z̃ − ˜̂y). (13i)

From this operation, we can see that the equilibrium point

of the system (10) for the step reference signal is equal to the

origin of the system (13). To construct the servo system, we

assume the existence and uniqueness of y such that ψ(y) = r.

From this assumption and Assumption 1, the transformed

nonlinearity ϕ has also sector restriction ϕ ∈ [0,∞]. So, the

servo system has no steady state error for step references.

7. Numerical Example

In this section, we present a numerical example that illus-

trates the main feature of our result. In the system illus-

trated in Fig. 8, the the linear part P (s) is

"

A B

C D

#

=

2

6

6

6

6

6

4

0 1 0 1 0

0 0 1 0 0

−6 −5 −3 0 1

0 1 0 0 0

1 0 0 0 0

3

7

7

7

7

7

5

and the nonlinear part ψ(y) is

ψ = diag[2 tan−1(y1), y
3
2 ] ∈ [0,∞]

The observer poles are [−11,−12,−10] and the poles of

the servo system are [−2.8,−2.6,−3.0,−2.5,−2.7]. A spec-

ified decoupled transfer function Ḡyw is given by Ḡyw =

diag[ 1
(1+s)2

, 1
1+s

]. The simulation result of z for the step

reference signal r = 1 is shown in Fig. 9.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

z(
t)

z
1

z
2

Fig. 9. The simulation result for the step reference signal

r = 1

From this figure, we can see that the output of the servo

system tracks the reference signal with no steady state error.

8. Conclusions

In this paper, we have presented a servo system design us-

ing a free parameter of Youla parameterization for MIMO

Wiener systems with nonlinear uncertainty. By using the

KYP lemma for stabilizable systems proposed by [4], we en-

sure that Theorem 1 holds in the case where the closed loop

system (3) with the same assumption as in [4] is stabilizable

and detectable(the proof of this fact was omitted). Our fu-

ture work is to obtain the stability conditions when the P (s)

in (2) has unstable poles.
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