• Title/Summary/Keyword: Non-volatile memory device

Search Result 91, Processing Time 0.031 seconds

Tunnel Barrier Engineering for Non-Volatile Memory

  • Jung, Jong-Wan;Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.32-39
    • /
    • 2008
  • Tunnel oxide of non-volatile memory (NVM) devices would be very difficult to downscale if ten-year data retention were still needed. This requirement limits further improvement of device performance in terms of programming speed and operating voltages. Consequently, for low-power applications with Fowler-Nordheim programming such as NAND, program and erase voltages are essentially sustained at unacceptably high levels. A promising solution for tunnel oxide scaling is tunnel barrier engineering (TBE), which uses multiple dielectric stacks to enhance field-sensitivity. This allows for shorter writing/erasing times and/or lower operating voltages than single $SiO_2$ tunnel oxide without altering the ten-year data retention constraint. In this paper, two approaches for tunnel barrier engineering are compared: the crested barrier and variable oxide thickness. Key results of TBE and its applications for NVM are also addressed.

The nonvolatile memory device of amorphous silicon transistor (비정질실리콘 박막트랜지스터 비휘발성 메모리소자)

  • Hur, Chang-Wu;Park, Choon-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1123-1127
    • /
    • 2009
  • This paper expands the scope of application of the thin film transistor (TFT) in which it is used as the switching element by making the amorphous silicon TFT with the non-volatile memory device,. It is the thing about the amorphous silicon non-volatile memory device which is suitable to an enlargement and in which this uses the additionally cheap substrate according to the amorphous silicon use. As to, the amorphous silicon TFT non-volatile memory device is comprised of the glass substrates and the gate, which evaporates on the glass substrates and in which it patterns the first insulation layer, in which it charges the gate the floating gate which evaporates on the first insulation layer and in which it patterns and the second insulation layer in which it charges the floating gate, and the active layer, in which it evaporates the amorphous silicon on the second insulation layer the source / drain layer which evaporates the n+ amorphous silicon on the active layer and in which it patterns and the source / drain layer electrode in which it evaporates on the source / drain layer.

Redundant Storage Device in Communication System (교환 시스템에서의 이중화 저장장치)

  • 노승환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.403-410
    • /
    • 2004
  • In general communication system is composed of processor subsystems, I/O processor subsystems and data storage device subsystems those are classified as their functions. In order to improve the data reliability, all subsystems are redundant. Storage device keeps the operational information such as system related information and charging information, and such informations must be stored in non-volatile memory. Flash memory and battery backup memory are commonly used as the non-volatile storage devices. But such kind of memories are expensive per unit capacity and data can't be restored when lost while not being backed up. In this paper we develop a redundant storage device to store a lot of data safely and reliably in communication system. The device consists of micro-controller, FPGA and hard disk It provides many functions those are rebuilding, automatic remapping, host service and remote host service. Also it is designed to provide host service while rebuilding is being done in order not to interrupt the communication services. The developed device can be used instead of expensive storage device like flash memory in various communication systems.

Nanoscale NAND SONOS memory devices including a Seperated double-gate FinFET structure

  • Kim, Hyun-Joo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • Journal of Applied Reliability
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • NAND-type SONOS with a separated double-gate FinFET structure (SDF-Fin SONOS) flash memory devices are proposed to reduce the unit cell size of the memory device and increase the memory density in comparison with conventional non volatile memory devices. The proposed memory device consists of a pair of control gates separated along the direction of the Fin width. There are two unique alternative technologies in this study. One is a channel doping method and the other is an oxide thickness variation method, which are used to operate the SDF-Fin SONOS memory device as two-bit. The fabrication processes and the device characteristics are simulated by using technology comuter-adided(TCAD). The simulation results indicate that the charge trap probability depends on the different channel doping concentration and the tunneling oxide thickness. The proposed SDG-Fin SONOS memory devices hold promise for potential application.

Electrical Characteristics of Resistive-Switching-Memory Based on Indium-Zinc-Oxide Thin-Film by Solution Processing (용액 공정을 이용한 Indium-Zinc-Oxide 박막 기반 저항 스위칭 메모리의 전기적 특성)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.484-490
    • /
    • 2017
  • We investigated the rewritable operation of a non-volatile memory device composed of Al (top)/$TiO_2$/indium-zinc-oxide (IZO)/Al (bottom). The oxygen-deficient IZO layer of the device was spin-coated with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions, and the $TiO_2$ layer was fabricated by atomic layer deposition. The oxygen vacancies IZO layer of an active component annealed at $400^{\circ}C$ using thermal annealing and it was proven to be in oxygen vacancies and oxygen binding environments with OH species and heavy metal ions investigated by X-ray photoelectron spectroscopy. The device, which operates at low voltages (less than 3.5 V), exhibits non-volatile memory behavior consistent with resistive-switching properties and an ON/OFF ratio of approximately $3.6{\times}10^3$ at 2.5 V.

Performance Evaluation and Analysis of NVMe SSD (Non-volatile Memory Express 인터페이스 기반 저장장치의 성능 평가 및 분석)

  • Son, Yongseok;Yeom, Heon Young;Han, Hyuck
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.428-433
    • /
    • 2017
  • Recently, the demand for high performance non-volatile memory storage devices that can replace existing hard disks has been increasing in environments requiring high performance computing such as data-centers and social network services. The performance of such non-volatile memory can greatly depend on the interface between the host and the storage device. With the evolution of storage interfaces, the non-volatile memory express (NVMe) interface has emerged, which can replace serial attached SCSI and serial ATA (SAS/SATA) interfaces based on existing hard disks. The NVMe interface has a higher level of scalability and provides lower latency than traditional interfaces. In this paper, an evaluation and analysis are conducted of the performance of NVMe storage devices through various workloads. We also compare and evaluate the cost efficiency of NVMe SSD and SATA SSD.

Effect of ZrO2 Buffer Layers for Pt/Bi3.25La0.75Ti3O12/ZrO2/Si (MFIS)-FET Structures (Pt/Bi3.25La0.75Ti3O12/ZrO2/Si (MFIS)-FET 구조를 위한 ZrO2 Buffer Layer의 영향)

  • Kim, Kyoung-Tae;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.439-444
    • /
    • 2005
  • We investigated the structural and electrical properties of BLT films grown on Si covered with $ZrO_{2}$ buffer layer. The BLT thin film and $ZrO_{2}$ buffer layer were fabricated using a metalorganic decomposition method. The electrical properties of the MFIS structure were investigated by varying thickness of the $ZrO_{2}$ layer. AES and TEM show no interdiffusion and reaction that suppressed using the $ZrO_{2}$ film as a buffer layer The width of the memory window in the C-V curves for the MFIS structure decreased with increasing thickness of the $ZrO_{2}$ layer. It is considered that the memory window width of MFIS is not affected by remanent polarization. Leakage current density decreased by about four orders of magnitude after using $ZrO_{2}$ buffer layer. The results show that the $ZrO_{2}$ buffer layers are prospective candidates for applications in MFIS-FET memory devices.

Fabrication and Device Performance of Tera Bit Level Nano-scaled SONOS Flash Memories (테라비트급 나노 스케일 SONOS 플래시 메모리 제작 및 소자 특성 평가)

  • Kim, Joo-Yeon;Kim, Moon-Kyung;Kim, Byung-Cheul;Kim, Jung-Woo;Seo, Kwang-Yell
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1017-1021
    • /
    • 2007
  • To implement tera bit level non-volatile memories of low power and fast operation, proving statistical reproductivity and satisfying reliabilities at the nano-scale are a key challenge. We fabricate the charge trapping nano scaled SONOS unit memories and 64 bit flash arrays and evaluate reliability and performance of them. In case of the dielectric stack thickness of 4.5 /9.3 /6.5 nm with the channel width and length of 34 nm and 31nm respectively, the device has about 3.5 V threshold voltage shift with write voltage of $10\;{\mu}s$, 15 V and erase voltage of 10 ms, -15 V. And retention and endurance characteristics are above 10 years and $10^5$ cycle, respectively. The device with LDD(Lightly Doped Drain) process shows reduction of short channel effect and GIDL(Gate Induced Drain Leakage) current. Moreover we investigate three different types of flash memory arrays.

Research trend of programmable metalization cell (PMC) memory device (고체 전해질 메모리 소자의 연구 동향)

  • Park, Young-Sam;Lee, Seung-Yun;Yoon, Sung-Min;Jung, Soon-Won;Yu, Byoung-Gon
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.253-261
    • /
    • 2008
  • Programmable metallizaton cell (PMC) memory device has been known as one of the next generation non-volatile memory devices, because it includes non-volatility, high speed and high ON/OFF resistance ratio. This paper reviews the operation principle of the device. Besides, the recent research results of professor Kozicki who firstly invented the device and investigated it for the memory applications, NEC corporation which studied it for the FPGA (field programmable gate array) switch applications, ETRI and chungnam national university which examined Te-based devices are introduced.

Performance Analysis of Flash Memory SSD with Non-volatile Cache for Log Storage (비휘발성 캐시를 사용하는 플래시 메모리 SSD의 데이터베이스 로깅 성능 분석)

  • Hong, Dae-Yong;Oh, Gi-Hwan;Kang, Woon-Hak;Lee, Sang-Won
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.107-113
    • /
    • 2015
  • In a database system, updates on pages that are made by a transaction should be stored in a secondary storage before the commit is complete. Generic secondary storages have volatile DRAM caches to hide long latency for non-volatile media. However, as logs that are only written to the volatile DRAM cache don't ensure durability, logging latency cannot be hidden. Recently, a flash SSD with capacitor-backed DRAM cache was developed to overcome the shortcoming. Storage devices, like those with a non-volatile cache, will increase transaction throughput because transactions can commit as soon as the logs reach the cache. In this paper, we analyzed performance in terms of transaction throughput when the SSD with capacitor-backed DRAM cache was used as log storage. The transaction throughput can be improved over three times, by committing right after storing the logs to the DRAM cache, rather than to a secondary storage device. Also, we showed that it could acquire over 73% of the ideal logging performance with proper tuning.