• 제목/요약/키워드: Non-stationary Frequency Analysis

검색결과 107건 처리시간 0.028초

전국 확률강수량 산정을 위한 비정상성 빈도해석 기법의 적용 (Application of a Non-stationary Frequency Analysis Method for Estimating Probable Precipitation in Korea)

  • 김광섭;이기춘
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.141-153
    • /
    • 2012
  • In this study, we estimated probable precipitation amounts at the target year (2020, 2030, 2040) of 55 weather stations in Korea using the 24 hour annual maximum precipitation data from 1973 through 2009 which should be useful for management of agricultural reservoirs. Not only trend tests but also non-stationary tests were performed and non-stationary frequency analysis were conducted to all of 55 sites. Gumbel distribution was chosen and probability weighted moment method was used to estimate model parameters. The behavior of the mean of extreme precipitation data, scale parameter, and location parameter were analyzed. The probable precipitation amount at the target year was estimated by a non-stationary frequency analysis using the linear regression analysis for the mean of extreme precipitation data, scale parameter, and location parameter. Overall results demonstrated that the probable precipitation amounts using the non-stationary frequency analysis were overestimated. There were large increase of the probable precipitation amounts of middle part of Korea and decrease at several sites in Southern part. The non-stationary frequency analysis using a linear model should be applicable to relatively short projection periods.

Effect of non-stationary spatially varying ground motions on the seismic responses of multi-support structures

  • Xu, Zhaoheng;Huang, Tian-Li;Bi, Kaiming
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.325-341
    • /
    • 2022
  • Previous major earthquakes indicated that the earthquake induced ground motions are typical non-stationary processes, which are non-stationary in both amplification and frequency. For the convenience of aseismic design and analysis, it usually assumes that the ground motions at structural supports are stationary processes. The development of time-frequency analysis technique makes it possible to evaluate the non-stationary responses of engineering structures subjected to non-stationary inputs, which is more general and realistic than the analysis method commonly used in engineering. In this paper, the wavelet-based stochastic vibration analysis methodology is adopted to calculate the non-stationary responses of multi-support structures. For comparison, the stationary response based on the standard random vibration method is also investigated. A frame structure and a two-span bridge are analyzed. The effects of non-stationary spatial ground motion and local site conditions are considered, and the influence of structural property on the structural responses are also considered. The analytical results demonstrate that the non-stationary spatial ground motions have significant influence on the response of multi-support structures.

웨이브렛 변환을 이용한 비정상 신호의 순간 주파수 결정 (Non-stationary signal analysis by Continuous Wavelets Transform)

  • 조익현;이인수;윤동한
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.29-36
    • /
    • 2009
  • 비선형적인 위상 변화를 지닌 비정상(non-stationary)신호는 레이더(Radar), 통신(telecommunication), 생체공학, 지질탐사, 음향 등 여러 분야에서 쉽게 접하는 신호이다. 비정상신호는 일반적으로 시간에 따라 신호의 물리적 특성이 변화하는 신호를 의미하며, 순간 주파수는 신호의 특정시간에 해당하는 신호의 주파수를 의미한다. 이 논문에서는 순간 주파수를 결정하기 위한 연속 웨이브렛 변환의 적용에 대하여 논하였다.

  • PDF

비정상성 강우빈도해석법에 의한 확률강우량의 평가 (Evaluation of Probability Rainfalls Estimated from Non-Stationary Rainfall Frequency Analysis)

  • 이창환;안재현;김태웅
    • 한국수자원학회논문집
    • /
    • 제43권2호
    • /
    • pp.187-199
    • /
    • 2010
  • 본 연구는 최근에 개발된 비정상성 강우빈도해석법을 적용하여 추정한 확률강우량에 대한 적용성 및 신뢰성을 평가하였다. 이를 위하여 기상청 관할 강우관측소 중 자료의 증가 경향성이 유의한 4개 지점에 대하여 3가지 형태의 확률강우량을 산정하였다. 첫 번째 확률강우량은 1973-1997년의 관측자료를 가지고 일반적인 강우빈도해석을 적용하여 추정한 확률강우량(SPR1997)이고, 두 번째 확률강우량은 1973-2006년의 관측자료를 가지고 일반적인 강우빈도 해석을 적용하여 추정한 확률강우량(SPR2006), 그리고 세 번째 확률강우량은 1973-1997년의 강우량 자료를 가지고 1997년을 현재시점이라 가정하여 2006년의 확률강우량을 비정상성 강우빈도해석법을 적용하여 추정한 확률강우량(NSPR2006)이다. 2006년을 목표연도라 가정하고, 확률강우량을 비교분석한 결과, 비정상성 강우빈도해석법에 의한 확률강우량(NSPR2006)이 정상성 확률강우량(SPR1997)에 비해 목표연도의 확률강우량에 대하여 적절한 값을 추정하는 것으로 나타났다. 본 연구는 또한 Bootstrap 기법을 이용한 신뢰구간을 비교하여 비정상성 확률강우량 추정에 적용되는 매개변수 추정법에 대한 평가를 수행하였다. 최우도법에 의한 신뢰구간 길이가 확률가중모멘트법에 의한 신뢰구간 길이보다 좁게 나타났으며, 이는 최우도법이 비정상성 강우빈도해석법에 적용되어 신뢰성 높은 확률강우량을 추정하는 것으로 판단된다.

기후변동을 고려한 조건부 GEV 분포를 이용한 비정상성 빈도분석 (Non-stationary Frequency Analysis with Climate Variability using Conditional Generalized Extreme Value Distribution)

  • 김병식;이정기;김형수;이진원
    • 한국습지학회지
    • /
    • 제13권3호
    • /
    • pp.499-514
    • /
    • 2011
  • 전통적 수문빈도분석의 기본가정은 기후와 수문사상이 정상성이라는 것으로 즉, 분포형의 매개변수들이 시간에 따라 불변이라는 것이다. 댐, 제방, 운하, 교량 등 수공 관련 기간시설물을 계획하고 설계할 때는 과거 상황을 이해하고 미래에도 그 상황이 유지될 것이라는 것을 근거로 한다. 그러나 현실은 기본가정과는 달리 수문자료들은 비정상성을 지니고 있으며 수자원관리자들에 의해 항상 기간시설물을 계획하고 설계 할 때 비정상성을 다루고자 끊임없이 노력해 왔다. 본 논문에서는 비정상성 수문빈도분석기법을 소개하고, 조건부 Generalized Extreme Value(GEV) 분포를 이용하여 비정상성 빈도분석을 실시하였다. 본 논문에서는 6개 기상관측소지점의 24시간 연최고치 강우량을 대상으로 비정상성 빈도분석을 실시하였으며 최우도법(Maximum Likelihood)을 사용하여 GEV 분포형의 매개변수를 추정하였다. 그 결과 비정상성 GEV 분포가 확률 강우량을 산정하는데 있어 적합함을 확인 할 수 있었다. 또한 ENSO(El Nino Southern Oscillation)를 나타내는 지수인 SOI(Southern Oscillation Index)를 이용하여 기후변동 고려한 비정상성 빈도분석을 실시하였다.

다차원 스펙트럼 해석법을 이용한 비정상 소음.진동 신호의 소음원 규명 (Source Identification of Non-Stationary Sound.Vibration Signals Using Multi-Dimensional Spectral Analysis Method)

  • 심현진;이해진;이유엽;이정윤;오재응
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1154-1159
    • /
    • 2006
  • In this paper, time-frequency analysis and multi-dimensional spectral analysis methods are applied to source identification and diagnostic of non-stationary sound vibration signals. By checking the coherences for concerned time, this simulation is very well coincident to expected results. The proposed method analyzes the signal instantaneously in both time and frequency domains. The MDSA (Multiple Dimensional Spectral Analysis) analyzes the signal in the plane of instantaneous time and instantaneous frequency at the same time. And it was verified by using the 1500cc passenger car which is accelerated from 70Hz to 95Hz in 4 seconds, the proposed method is effective in determining the vehicle diagnostic problems.

Adaptive Wavelet Analysis of Non-Stationary Vibration Signal in Rotor Dynamics

  • Ji Guoyi;Park Dong-Keun;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.26-30
    • /
    • 2005
  • A rotor run-up or run-down process provide more useful information for modal analysis than normal operation conditions. A traditional difficulty associated with rotor run-up or run-down analysis is the non-stationary nature of vibration data. This paper compares Short-Time Fourier Transform (STFT) and the wavelets analysis in these non-stationary signal analyses. An Adaptive Wavelet Analysis (AWT) is proposed to analyze these signals. Although simulations and experiments in a simple rotor-bearing system show that both STFT and AWT can be used to analyze non-stationary vibration signals in rotor dynamics, proposed AWT provides better results than STFT analysis. From the amplitude-frequency curve obtained by AWT, the modal frequency and damping ratio are calculated. This paper also analyzes the characteristics of signals when the shaft touches the outer hoop in a run-up process. The AWT can give a good result in this complex dynamic analysis of the touching process.

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.

Power 모형을 이용한 비정상성 확률강수량 산정 (Estimates the Non-Stationary Probable Precipitation Using a Power Model)

  • 김광섭;이기춘;김병권
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.29-39
    • /
    • 2014
  • In this study, we performed a non-stationary frequency analysis using a power model and the model was applied for Seoul, Daegu, Daejeon, Mokpo sites in Korea to estimate the probable precipitation amount at the target years (2020, 2050, 2080). We used the annual maximum precipitation of 24 hours duration of precipitation using data from 1973 to 2009. We compared results to that of non-stationary analyses using the linear and logistic regression. The probable precipitation amounts using linear regression showed very large increase in the long term projection, while the logistic regression resulted in similar amounts for different target years because the logistic function converges before 2020. But the probable precipitation amount for the target years using a power model showed reasonable results suggesting that power model be able to reflect the increase of hydrologic extremes reasonably well.

설계응답스펙트럼을 고려한 인공지진파의 발생에 관한 연구 (Generation of Artificial Earthquake Ground Motions considering Design Response Spectrum)

  • 정재경;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.145-150
    • /
    • 1999
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This paper shows the process to generate nonstationary artificial earthquake ground motions considering target design response spectrum chosen by ATC14.

  • PDF