Browse > Article
http://dx.doi.org/10.3741/JKWRA.2010.43.2.187

Evaluation of Probability Rainfalls Estimated from Non-Stationary Rainfall Frequency Analysis  

Lee, Chang-Hwan (Dept. of Civil and Environmental Engineering, Hanyang University)
Ahn, Jae-Hyun (Dept. of Civil Engineering, Seokyeong University)
Kim, Tae-Woong (Dept. of Civil and Environmental System Engineering, Hanyang University)
Publication Information
Journal of Korea Water Resources Association / v.43, no.2, 2010 , pp. 187-199 More about this Journal
Abstract
This study evaluated applicability and confidence of probability rainfalls estimated by the non-stationary rainfall frequency analysis which was recently developed. Using rainfall data at 4 sites which have an obvious increasing trend in observations, we estimated 3 type probability rainfalls; probability rainfalls from stationary rainfall frequency analysis using data from 1973-1997, probability rainfalls from stationary rainfall frequency analysis using data from 1973-2006, probability rainfalls from non-stationary rainfall frequency analysis assuming that the current year is 1997 and the target year is 2006. Based on the comparison of residuals from 3 probability rainfalls, the non-stationary rainfall frequency analysis provided more effective and well-directed estimates of probability rainfalls in the target year. Using Bootstrap resampling, this study also evaluated the parameter estimation methods for the non-stationary rainfall frequency analysis based on confidence intervals. The confidence interval length estimated by the maximum likelihood estimation (MLE) is narrower than the probability weighted moments (PWM). The results indicated that MLE provides more proper confidence than PWM for non-stationary probability rainfalls.
Keywords
Non-stationary rainfall frequency analysis; Probability rainfall; Confidence interval;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 건설교통부 (2000). 1999년도 수자원관리기법개발 연구조사 보고서, 제 1권 한국 확률강우량도 작성. 건설교통부.
2 김병식, 서병하, 김남원 (2003). “전이함수모형과 일기발생모형을 이용한 유역규모 기후변화시나리오의 작성.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제3호, pp. 345-363.
3 김경덕, 허준행 (2004). “수문자료 크기에 따른 지역빈도해석 적용성 기준 검토.” 2004년 한국수자원학회학술발표대회논문집, 한국수자원학회, pp. 190-194.   과학기술학회마을
4 Flower, H.J., and Kilsby, C.G. (2003a). “A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000.” International Journal of Climatology, Vol. 23, pp. 1313-1334.   DOI
5 Flower, H.J., and Kilsby, C.G. (2003b). “Implications of change in seasonal and annual extreme rainfall.” Geophysical Research Letters, Vol. 30, No. 13, pp. 1720 doi:10.1029/2003GL017327.   DOI
6 안재현, 김태웅, 유철상, 윤용남 (2000). “자료기간 증가에 따른 확률강우량의 거동 특성 분석.” 한국수자원학회논문집, 한국수자원학회, 제33권, 제5호, pp. 569-580.
7 Stedinger, J.R., and Crainiceanu, C.M. (2001). “Climate variability and flood-risk management, risk-based decision making in water resources.” Ⅸ Proceedings of the Ninth Conference, United Engineering Foundation, ASCE, Santa Barbara, CA, USA, pp. 77-86.   DOI
8 권현한, 문영일 (2004). “수문시계열의 Bootstrap 신뢰구간 추정기법 응용.” 대한토목학회논문집, 대한토목학회, 제24권, 제6B호, pp. 567-576.
9 권영문, 박진원, 김태웅 (2009). “강우의 증가 경향성을 고려한 목표연도 확률강우량 산정.” 대한토목학회논문집, 대한토목학회, 제29권, 제2B호, pp. 131-139.
10 오재호, 홍성길(1995). “대기중 CO2 증가에 따른 한반도 강수량 변화.” 한국수자원학회지, 한국수자원학회, 제28권, 제3호, pp. 143-157.
11 유철상, 박정훈, 김중훈 (2006). “기후변화에 따른 선행토양함수조건(AMC)의 변화.” 대한토목학회논문집, 대한토목학회, 제26권, 제3B호, pp. 233-240.
12 윤용남, 유철상, 이재수, 안재현 (1999). “지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여: 1. 연/월 강수량의 변화에 따른 일강수량 분포의 변화분석.” 한국수자원학회논문집, 한국수자원학회, 제32권, 제6호, pp. 617-625.
13 정대일, 제리 스테딘져, 성장현, 김영오 (2008). “기후 변화를 고려한 홍수 위험도 평가.” 대한토목학회논문집, 대한토목학회, 제28권, 제1B호, pp. 55-64.
14 Gellens, D., and Roulin, E. (1998). “Streamflow response of Belgian catchment to IPCC climate change scenario.” Journal of Hydrology, Vol. 210, pp. 242-258   DOI
15 정종호, 윤용남 (2007). 수자원설계실무, 구미서관.
16 Boorman, D.B. and Sefton, C.E,M. (1997). "Recognizing the uncertainty in the quantification of the effect of climate on hydrological response.” Climate Change, Vol. 35, pp. 415-434.   DOI
17 Efron, B. (1997). “Bootstrap Method: Another Look at the Jack-knife.” The Annuals of Statistics, Institute of Mathematical Statistics, Vol. 7, No 1, pp. 1-26.   DOI
18 Griffis, V.W., and Stedinger, J.R. (2007). “Incorporating climate change and variability into Bulletin 17B LP3 Model.” World Environmental and Water Resource Congress 2007, ASCE, Tampa, FL, USA.   DOI
19 He, Y., Bardossy, A. and Brommundtm, J. (2006). “Non-stationary flood frequency analysis in southern Germany.” The 7th International Conference on HydroScience and Engineering, Philadelphia, USA.
20 Kite, G.W. (1993). “Application of a land class hydrological model to climate change.” Water Resour. Res., Vol. 29, pp. 2377-2384.   DOI
21 Mirza. M.Q., Warrick, R.A., Ericksen, N.J., and Kenny, K.J. (1998). “Trend and persistence in precipitation in the Ganges, Brahmaputa and Meghna basin in the south Asia.” Hydrol. Sci. J., Vol. 43, No. 6, pp. 845-858.   DOI
22 Panagoulia, D., and Dimou, G. (1997). “Sensitivity of flood events to global climate change.” Journal of Hydrology, Vol. 191, pp. 208-222.   DOI
23 Sharma, A., Tarboton, D.G., and Lall, U. (1997). “Streamflow simulation: a non-parametric approach.” Water Resources Research, Vol. 33, No. 2, pp. 291-308   DOI
24 Robinson, P.J., and Finkelstein, P.L. (1991). “The development of impact-oriented climate scenario.” Bull. Ameri. Meteolor. Soc., Vol. 72, pp. 481-490.   DOI
25 Stedinger, J.R., Vogel, R.M., and Foufoula-Georgious, E. (1993). “Frequency analysis of extreme events, Chapter 18.” Handbook of Hydrology, D. Maidment (ed.), McGraw-Hill, Inc., New York, USA.
26 Strupczewski, W.G., Singh, V.P., and Flench, W. (2001). “Non-stationary approach to at-site flood frequency modeling Ⅰ. Maximum likelihood estimation.” Journal of Hydrology, Vol. 248, pp. 123-142.   DOI   ScienceOn
27 Wang, J., and Yang, P. (2005). “A compound reconstructed prediction model for nonstationary climate processes.” Journal of Climatology, Vol 25, pp. 1265-1277.   DOI
28 Zhao, B., Tung, Y.K., Yeh, K.C., and Yang, J.C. (1997). “Storm resampling for uncertainty analysis of a multiple-storm unite hydrograph.” Journal of Hydrology, Vol. 194, pp. 366-384.   DOI