• 제목/요약/키워드: Non-precious alloy

검색결과 43건 처리시간 0.021초

베릴륨함유 치과 주조용 비귀금속 합금의 젖산용액에 의한 금속 노출수준 평가 (Evaluation of a metal level in non-precious metal alloys dental casting having beryllium by lactic acid Solution)

  • 박수철;장은진;한석윤
    • 대한치과기공학회지
    • /
    • 제33권2호
    • /
    • pp.121-128
    • /
    • 2011
  • Purpose: The purpose of this study is to investigate the level of each metal in non-precious metal alloys dental casting, still used even banned for use and trade by the law, for oral health. Methods: Two kinds of metal alloys were analyzed. One was Ticonium 100 for removable prosthesis and the other was Rexillium V for dental porcelain. Two samples of each metal alloy were made in 0.5g, 1.0g, and 1.5g. Total number of samples were 12. Two kinds of lactic acid Solution, pH7 and pH4.6, were injected into each samples. After injection, each samples had been for 21days ${\pm}$ 1 hour in the water tank of which temperature was $37^{\circ}C$. The level of metal was measured in each sample by inductively couplled plasma-atomic emission spectrometer. Results: In both metal alloys, metals, chrome, nickel, beryllium, and molybdenum, were founded. In Ticonium 1000, the highest level of nickel was 2.531ppm in 1.5g pH4.6 sample while the highest level of nickel was 4.062ppm in 1.5g pH4.6 sample of Rexillium V. In chemical composition of these methal alloys, chrome(14~17%) was much more than beryllium(1.95~1.99%) and molybdenum(5.0~9.0%) but berllium and molybdenum were founded more than chrome in samples. Therefore, chrome showed better anti-corrosion than other metal alloys. In both metal alloys, more metals were founded in higher pH level and more mass. Levels of chrome was significantly different in samples of both metal alloys in each pH level(p<0.05). Levels of nickels was significantly different in samples of both metal alloys in each pH level(p<0.05). Conclusion: For oral health, further studies are needed in nickel-chrome metal alloy and cobalt metal alloy of non-beryllium in addittion to beryllium metal alloy and also long-term studies needed in various period and other non-percious metal alloys for dental casting.

치관보철물 제작에 사용되는 비귀금속합금의 주조성에 관한 실험적 연구(III) - 합금 재사용에 따른 주조성과 물리적 특성의 변화 - (The experimental research on the castability of non precious metal alloy which is use for the production of crown and bridge prosthetics(III) - The change of castability and physical properties according to the recasting. -)

  • 정연성
    • 대한치과기공학회지
    • /
    • 제9권1호
    • /
    • pp.21-29
    • /
    • 1987
  • The purpose of this investigation was to determine the effect of recasting on the castability and physical properties of the nonprecious metal alloy. Using 2 sorts of the nonprecious metal alloy for production of Crown and Bridge prosthetics, such as 1) sankin C. B 80 metal 2) C & B alloy, the result of experimental research on the castability and hardness according to the recasting, is as followes; 1. The difference of castability between sankin CB80 metal and C & B alloy was statistically significant (p < 0.01) and the difference of castability among the test groups, was statistically significant (p <0.01). 2. In the case of sankin C.B 80 metal, the difference of castability among the New alloy and first mixed alloy and second mixed alloy and old alloy was not significant statistically (p >0.05). 3. In the case of C & B alloy, the difference of castability among the New alloy and mixed alloys and old alloy, was not significant statistically (p >0.05). 4. The difference of hardness between sankin C & B alloy was not significant statistically (p >0.05), but the difference of hardness among the test groups was statistically significant (p <0.01). 5. In the case of Sankin C.B 80 metal, the difference of hardness among the new ally and mixed alloys and old alloy was not significant statistically (p >0.05). 6. In the case of C & B alloy, the difference of hardness between New alloy and mixed alloys was not significant statistically (p >0.05) but the difference of hardness among the old alloy and New alloy and mixed alloys was statistically significant (p <0.01).

  • PDF

가철성(可撤性) 국부의치(局部義齒)에서 연합(聯合) Clasp 연결부위(連結部位)의 미세구조(微細構造) (MICROSTRUCTURE OF COMBINATION CLASP JOINTS IN REMOVABLE PARTIAL DENTURE)

  • 손한기;김태완
    • 대한치과보철학회지
    • /
    • 제22권1호
    • /
    • pp.123-132
    • /
    • 1984
  • 매몰(埋沒) 납착법과 가공선(加工線) 봉매(封埋) 주조법(鑄造法)에 의해 국부의치(局部義齒)의 금속(金屬)과 가공선(加工線)을 각각(各各) 귀금속(貴金屬) 및 비귀금속(非貴金屬)으로 제작(製作)하였을 때 연합(聯合) clasp 연결부(連結部)의 미세구조(微細構造)를 금속(金屬) 현미경(顯微鏡)으로 관찰(觀察)하여 다음과 같은 결과(結果)를 얻었다. 납착 및 주조시편(鑄造試片) 공(共)히 연결부위(連結部位)의 미세조직(微細組織)은 확산(擴散)에 의한 다소(多少)의 결정립계(結晶粒界)의 변화(變化)를 관찰(觀察)할 수 있었다. 납착시편에서는 비귀금속(非貴金屬)보다 귀금속(貴金屬) 사용(使用)시 양호(良好)한 결합양상(結合樣相)을 나타내었다. 납착시편에서는 귀금속(貴金屬) 및 비귀금속(非貴金屬) 차이(差異)보다는 같은 계통(系統)의 금속(金屬)을 사용(使用)함으로서 보다 양호(良好)한 결합양상(結合樣相)을 나타내었다. 주조시편(鑄造試片)과 납착시편 모두에서 시편제작(試片製作)의 기술적(技術的)인 방법(方法)에 의해 다소(多少)의 기공(氣孔) 및 산화물(酸化物) 형성(形成) 등(等)과 같은 오염(汚染)된 계면부(界面部)가 나타났다.

  • PDF

도재전장관용 비귀금속합금과 도재의 융착결합에 관한 연구 (A Study on Bond Strength of Procelain with Non Precious Alloy)

  • 강성현
    • 대한치과보철학회지
    • /
    • 제18권1호
    • /
    • pp.49-57
    • /
    • 1980
  • The adhesive mechanisms on the metal-ceramic restorations have been reported to be mechanical interlocking, chemical bonding, compressive force, and Van der Waal's force, etc. Of these, the mechanical interlocking and chemical bonding forces are thought to affect the adhesive force between Ni-Cr alloy and porcelain. This study investigates the adhesion of Ni-Cr alloy to porcelain according to surface treatment. For this purpose, the following experiments were made; The compositions of Ni-Cr alloy as cast by emission spectrograph, and the oxides produced on Ni-Cr alloy during degassing at $1850^{\circ}F$ for 30 minutes in air and in vacuum were analyzed by X-ray diffractograph. The metal phases of Ni-Cr alloy were observed according to porcelain-baking cyclic heat treatment by photo microscope and the distribution and the shift of elements of Ni-Cr alloy and porcelain and the failure phases between Ni-Cr alloy and porcelain by scanning electron microscope. The adhesive force between Ni-Cr alloy and porcelain was measured according to surface treatment with oxidization and roughening by Instron Universal Testing Machine. Results were as follows; 1. The metal phases of Ni-Cr alloy as cast and degassing state showed the enlarged and fused core, but when subjected to porcelain-baking cyclic heat treatment, showed a dendrite growing. 2. The kinds of metal oxides produced on Ni-Cr alloy during degassing were found to be NiO and $Cr_2O_3$. 3. The distribution of elements at the interface of Ni-Cr alloy and porcelain in degassing state showed demarcation line, but in roughening state, showed mechanical interlocking phase. 4. The shift of elements at the interface occurred in both states, but the shift amount was found to be larger in roughening than in degassing. 5. The adhesive force between Ni-Cr alloy and porcelain was found to be $3.45{\pm}0.93kg/mm^2$, in degassing and $3.82{\pm}0.99kg/mm^2$, in roughening. 6. The failure phase between Ni-Cr alloy and porcelain showed the mixed type failure.

  • PDF

티타늄과 비귀금속 합금에 중간층으로 적용한 Au bonding agent의 금속-도재 결합에 대한 평가 (Evaluation of Bond Strength in cp-Ti and Non-precious Metal-Ceramic System Using a Gold Bonding Agent)

  • 이정환;안재석
    • 대한치과기공학회지
    • /
    • 제31권4호
    • /
    • pp.15-23
    • /
    • 2009
  • The aim of this study was to evaluate the bond strength of using a Au bonding agent applied on cp-Ti and nonprecious metal-gold-ceramic system. Metallic frameworks(diameter: 5mm, height: 20mm)(N=56, n=7per group) cast in Ni-Cr alloy, Co-Cr alloy and cp-Ti were obtained using acrylic templates and airborne particle abraded with $110{\mu}m$ aluminum oxide. Au bonding agent was applied on wash opaque firing as intermediate layer. SEM and SEM/EDS line profile were performed on the cutting the cross-section of the metal substrate-porcelain with intermediate Au coating. Groups were tested using shear bond strength(SBS) testing at 0.5mm/min. The mean SBS values for the ceramic-Au layer-metal combination were significantly higher than those ceramic-metal combination. While ceramic-Au layer-cp-Ti combinations failed to increase bond strength instead of using a titanium bonding porcelain. The appication of using Au intermediate layer significantly improve the bond strength combination with metal-ceramic system.

  • PDF

이종금속간의 결합방법에 따른 결합강도에 관한 비교 연구 (Comparative analysis on mechanical properties of gold and Co-Cr dental alloys due to joining methods)

  • 박성규;최부병;권긍록
    • 구강회복응용과학지
    • /
    • 제19권2호
    • /
    • pp.75-86
    • /
    • 2003
  • The purpose of this study was to evaluate their mechanical properties after laser-welding or soldering of precious and non-precious dental alloys. For this study, 30 Co-Cr alloy specimens, 15 gold alloy specimens, 15 palladium alloy specimens were casted and seperated on the middle area. 15 sperated Co-Cr specimens and 15 seperated gold alloy specimens were laser welded (GW Group). 15 sperated Co-Cr specimens and 15 sperated gold alloy specimens were soldered by coventional soldering method (GS Group). 15 sperated Co-Cr specimens and 15 seperated palladium alloy specimens were laser welded (PW Group). 15 sperated Co-Cr specimens and 15 sperated palladium alloy specimens were soldered by coventional soldering method (PS Group). Tensile strength, 0.2% yield strength, % elongation were recorded in nine specimens of each group. Bending strength were record in six specimens of each group. These data for four groups were subjected to a two-way analysis of variance(ANOVA). The fracture locations, fractured surfaces were examined by SEM(scanning electron microscope). The results were as following: 1) In the same alloy combination, the tensile strength and 0.2% yield strength and of the laser welded group with same metal combination were significantly less than soldered groups(p<0.05). 2) In the combination of Co-Cr/Palladium, the bending strength of laser welded group were significantly less than that of soldered groups(p<0.05). In the combination of Co-Cr/Gold, the bending strength of laser welded group were significantly higher than that of soldered groups(p<0.05). 3) In the same method of joint, the tensile strength and 0.2% yield strength and bending strength of the Co-Cr/gold were significantly higher than Co-Cr/palladium(p<0.05). 4) There was no significantly statistical difference between each group in the % elongation(p>0.05). 5) The fracture of the laser welded specimens occured in the welding area and a large void was observed at the center of the fracture surface. 6) The fracture of the soldered specimens occured also inthe soldered area and many porpsities were showed at the fracture sites.

도재용착주조관용 Co-Cr계 비귀금속 합금의 전단결합강도 비교평가에 관한 연구 (The study on Comparison Evaluation of Shear Bond Strength of Co-Cr Based Alloy using for Porcelain Fused Metal)

  • 김희진;김부섭
    • 대한치과기공학회지
    • /
    • 제32권3호
    • /
    • pp.195-207
    • /
    • 2010
  • Purpose: The purpose of this study was to observe the microstructural changes of surface in the specimens, performing the shear bond strength testing. The currently most used non-precious alloys are nickel-chromium based alloys with or without beryllium. However, their biocompatibility has been questioned concerning possible damages to the health of the patient and professionals involved in the fabrication of prosthesis caused by long exposure to Ni and Be. An option to nickel-chromium alloys is the cobalt-chromium alloy, an alternative that does not sacrifice the physical properties of the metal porcelain systems. Studies in the animals substantially show that the cobalt-chromium alloys are relatively well tolerated, being therefore more biocompatible than the nickel-chromium alloys. Methods: Non-addition Be to nickel-chromium based alloy(Bellabond plus) and cobalt-chromium alloy which has been widely used(Wirobond C) fused with ZEO light porcelain classified control group and cobalt-chromium alloy which is developing alloy of Alphadent company in Korea(Alphadent alloy) fused with ZEO light porcelain classified experimental group. The specimens of $4mm{\times}4mm{\times}0.5mm$ were prepared as-cast and as-opaque to cast body to analyze the mechanical characteristic change, the microstructure of alloy surface. The phase change was used to observe through XRD analysis and OM/SEM was used to observe the surface of specimens as-cast and as-opaque to cast body. Chemical formation of their elements was measured with EDS. Then hardness was measured with Micro Vicker's hardness tester. Shear bond strength test thirty specimens of $10mm{\times}10mm{\times}2mm$ was prepared, veneered, 3mm high and 3mm in diameter, over the alloy specimens. The shear bond strength test was performed in a universal testing machine(UTM) with a cross head speed of 0.5mm/min. Ultimate shear bond strength data were analyzed with one-way ANOVA and the Scheffe's test (P<0.05). Within the limits of this study, the following conclusions were drawn: The X-ray diffraction analysis results for the as-cast and as-opaque specimens showed that the major relative intensity of Bellabond plus alloy were changed smaller than Wirobond C and Alphadent Co-Cr based alloys. Results: Microstructural analysis results for the opaque specimens showed all the alloys increased carbides and precipitation(PPT). Alphadent Co-Cr based alloy showed the carbides of lamellar type. The Vickers hardness results for the opaque specimens showed Wirobond C and Alphadent Co-Cr based alloys were increaser than before ascast, but Bellabond plus alloy relatively decreased. The mean shear bond strengths (MPa) were: 33.11 for Wirobond C/ZEO light; 25.00 for Alphadent Co-Cr alloy/ZEO light; 18.02 for Bellabond plus/ZEO light. Conclusion: The mean shear bond strengths for Co-Cr and Ni-Cr based alloy were significantly different. But the all groups showed metal-metal oxide modes in shear bond strengths test at the interface.

도재소부금관용 비귀금속 합금의 반복주조가 강도에 미치는 영향 (The Impacts of the Recasting of Non-precious Metal Alloy for Porcelain Fused to Metal Crowns on Strength)

  • 정희선;오경재
    • 대한치과기공학회지
    • /
    • 제31권3호
    • /
    • pp.27-34
    • /
    • 2009
  • This study compared and analyzed changes to the mechanical characteristics to nonprecious metal alloy for porcelain fused to metal crowns when it's repetitively used without the addition of new alloy. Metal samples were made with the Verabond V nonprecious metal alloy. Those samples to measure tensile and yield strength were made in the standardized design(ISO 22674), those to measure bond strength in the $25mm{\times}3mm{\times}0.5mm$ format, and those to measure hardness in the $10mm{\times}10mm{\times}1mm$ format. A ceramic to measure bond strength was made at the center of the metal sample in the length of $8{\ss}{\AE}$ by using Noritaker Super Porcelain EX-3. Ten samples were prepared for one, three and five repetitions of casting each. The test results were as follows: 1. The more casting was repeated, the more significantly tensile strength dropped. 2. The more casting was repeated, the more significantly yield strength dropped. 3. Repetitive casting didn't cause significant changes to bond strength. 4. The Vickers hardness significantly fell with increasing repetitions of casting. There were no changes to bond strength observed with the increasing number of repeating casting. But tensile strength, yield strength, and Vickers hardness decreased. Those results indicate that repeated casting can affect durability and that careful attention should be paid by avoiding repetitive use or excessive increase of uses when no new alloy is added.

  • PDF

알칼라인 수전해용 Ni-Fe 합금 전착 전극의 특성 (Characterization of Ni-Fe Alloy Electrodeposited Electrode for Alkaline Water Electrolysis)

  • 안다솔;배기광;박주식;김창희;강경수;조원철;조현석;김영호;정성욱
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.636-641
    • /
    • 2016
  • Alkaline water electrolysis is commercial hydrogen production technology. It is possible to operate MW scale plant. Because It used non-precious metal for electrode. But It has relatively low current density and low efficiency. In this study, research objective is development of anode for alkaline water electrolysis with low cost, high corrosion resistance and high efficiency. Stainless steel 316L (SUS 316L) was selected for a substrate of electrode. To improve corrosion resistance of substrate, Nickel (Ni) layer was electrodeposited on SUS 316L. Ni-Fe alloy was electrodeposited on the passivated Ni layer as active catalyst for oxygen evolution reaction(OER). We optimized preparation condition of Ni-Fe alloy electrodeposition by changing current density, electrodeposition time and composition ratio of Ni-Fe electrodeposition bath. This electrodes were electrochemically evaluated by using Linear sweep voltammetry (LSV) and Cyclic voltammetry (CV). The Ni-Fe alloy (Ni : Fe = 1 : 1) showed best activity of OER. The optimized electrode decreased overpotential about 40% at $100mA/cm^2$ compared with Ni anode.

Comparative clinical study of the marginal discrepancy of fixed dental prosthesis fabricated by the milling-sintering method using a presintered alloy

  • Kim, Mijoo;Kim, Jaewon;Mai, Hang-Nga;Kwon, Tae-Yub;Choi, Yong-Do;Lee, Cheong-Hee;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권5호
    • /
    • pp.280-285
    • /
    • 2019
  • PURPOSE. The present study was designed to examine the clinical fit of fixed dental prosthesis fabricated by the milling-sintering method using a presintered cobalt-chromium alloy. MATERIALS AND METHODS. Two single metal-ceramic crowns were fabricated via milling-sintering method and casting method in each of the twelve consecutive patients who required an implant-supported fixed prosthesis. In the milling-sintering method, the prosthetic coping was designed in computer software, and the design was converted to a non-precious alloy coping using milling and post-sintering process. In the casting method, the conventional manual fabrication process was applied. The absolute marginal discrepancy of the prostheses was evaluated intraorally using the triple-scan technique. Statistical analysis was conducted using Mann-Whitney U test (${\alpha}=.05$). RESULTS. Eight patients (66.7%) showed a lower marginal discrepancy of the prostheses made using the milling-sintering method than that of the prosthesis made by the casting method. Statistically, the misfit of the prosthesis fabricated using the milling-sintering method was not significantly different from that fabricated using the casting method (P=.782). There was no tendency between the amount of marginal discrepancy and the measurement point. CONCLUSION. The overall marginal fit of prosthesis fabricated by milling-sintering using a presintered alloy was comparable to that of the prosthesis fabricated by the conventional casting method in clinical use.